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Introduction

If you are an adventurer who can find your way out of the most
sophisticated mazes, and if you have overcome fantastic threats to
win priceless treasures, you are a serious computer adventurer.
You have probably thought of writing your own adventure prograrn.

You can begin in BASIC. This book will help you create an
expert adventure—with a TRS-80 Model I or III microcomputer,
just 16K memory, and a tape system. You need some instructionand
some examples, which this book provides. It uses two example
programs, Basements and Beasties and Mazies and Crazies.
Their organization—from execution loops, to subroutines, to han-
dlers, to commands—is explained in detail. You will learn how to
access machine-language subroutines from BASIC to jncrease the
speed of your BASIC adventures. You will learn a variety of ways to
access arrays and to store information. You will also learn—
painlessly—the logical discipline of structured programming.

Everything you learn from Writing BASIC Adventure Pro-
grams will increase your skill as an adventure writer—and inspire
your imagination.
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Chapter 1

Adventure Beneath the Keyhoard

Board game manufacturers made an unusual discovery some years
ago. They discovered that there was a market for complex role-
playing games. Not content merely to manipulate a token around a
board, players wanted games they could “step into” to exercise
their imaginative and strategic skills. A new breed of board games
resulted, and a player can now do anything from recreating historic
battles to fighting dragons and underworld armies.

Then the age of home computing was upon us, and the imagina-
tive gaming enthusiasts predicted that an alliance between the two
fields would not be far off. Imaginative or simulative gaming is, after
all, complex, and there are times in which the sheer logistics of
playing the game hinder the effectiveness of the simulation. But, ifa
microcomputer could be used to keep score, manipulate parts,
describe situations . . . why, the player could play instead of work. It
seemed an ideal union.

This sort of union has taken place, but the direction it has taken
has been shaped by one other factor: the existence of imaginative
gaming programs for larger computers. It was quite a few years ago
that Crowther and Woods first cranked out their Adventure pro-
gram, an amusing simulation placing the player in a danger-filled
cavern, fighting troll and snake, dragon and dwarf, as he searches for
treasure. This prototype adventure was written for the PDP-10 and
was a popular pastime on university campuses long before its
little-cousin microcomputer version became available.



Now you can leat through popular computing magazines and
find many adventure and fantasy simulation programs for the home
computer—some like the original Adventure, others with new
twists. Some are in BASIC, since most home computers at present
have ROM-resident BASIC; others are quick, efficient machine-
language works.

It occurred to me, however, that no one has taken the time to
explain how these various adventure programs work—the pro-
gramming aspect, that is—and how you might approach the task of
constructing one yourself. It is this consideration that this book
studies. To simplify the teaching process this book deals with
writing an adventure program in BASIC, as opposed to assembly
language. This should hold your interest, since all sorts of inventive
maneuvers become necessary to make bulky BASIC perform effi-
ciently enough for such a complex type of program.

In this book I use the generic term “adventure” program to
refer to any program having the same general play structure and
objectives as Crowther and Woods' original offering. My explana-
tions and examples are not taken from the actual code of any
commercially available programs. Rather, as you will see, a whole
new game program, Basements and Beasties, has been written
specifically for this book. My aim s to teach programming skills, not
to prevent other hardworking programmers from selling their fine
creations.

As an additional example, a second adventure program, called
Mazies and Crazies, can be found in Chapters 11 through 13. This
program is a somewhat different brand of game, making full use of
the TRS-80 graphics capabilities to produce a real-time adventure
experience.

WHAT IS AN ADVENTURE PROGRAM?

Inits simplest form an adventure programis like a travel folder
or a very descriptive map. The player is dropped into a scenario,
such as a gloomy dungeon, a steamy rain-forest, or a haunted
mansion, and is allowed to move about. The computer describes, in
a short paragraph, what the space looks like. (Some recent pro-
grams actually draw a map, but let’s keep it simple.) The size of the
scenario in terms of number of rooms or locations is limited primar-
ily by the available memory of the home computer.

T addition to the descriptive function of the adventure pro-
gram, the player has a means of communicating with the program to
affect his simulated environment. This is accomplished by entering
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YOU ARE STANDING IN AN OPEN FIELD
THERE IS A JEWEL HERE!

A RAGING BULL PAWS THE GROUND. READY
TO CHARGE!

* TAKE JEWEL
OKAY

* NORTH
HERE IS A SMALL BARN. OLD AND MUSTY

* ENTER
THE DOOR IS LOCKED!

Fig. 1-1. Sample run of a hypothetical adventure program.

simple one- or two-word command phrases that are recognized by
the program’s limited vocabulary (Fig. 1-1). With a handful of
phrases the player can move, open and close doors, take objects, or
interact with the scenario in other ways.

The goal of the game is for the player to find and keep various
articles of worth, “treasures,” hidden about the artificial world. He
is hindered in his attempt by monstrous creatures, such as trolls,
dragons, and spiders—or perhaps more conventional enemies like
marauding Huns. The player can die in the fictitious world; usually,
he canalsobe resurrected to continue playing, albeit with a substan-
tial point-loss. The game is not really over until all enemies are
vanquished and all treasures are won.

Figure 1-2 gives a sample of the sort of player/computer
interchange you can expect in a classic adventure program. Note
that the program does not understand all possible inputs, but the
cleverer the command interpreter, the better the program.

WHAT YOU NEED?

Adventure programs are one of the last bastions of commercial
programming. Home computer enthusiasts have already written
their own space war games; with a little instruction adventure
programs can also become simple to handle. Relax. You, too, can
design computerized labyrinthes and adventures complete with
scaly, green things!

First, you'll need a home computer. This book makes the
assumption that you own a Radio Shack TRS-80 Model I or IT1 with
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Fig. 1-2. Adventure program /player interaction.

16K bytes of memory. Both of these units operate under Microsoft
BASIC, and all programming in this book uses this particular
BASIC. However almost any principle in this book can be applied to
other BASIC home computers, and the programs themselves
should run on other machines with only minor changes.

Also, for storage and recall of the program, a cassette tape
(rather than disk) system is assumed. My target reader for this
book, obviously, is the TRS-80 owner with a minimal system, the
owner that cannot afford all of the extras. How much can be done
with only 16K and a tape machine? You'll soon see!

Second, you'll need imagination. You probably have more
imagination than you think and simply need to exercise it. Three-
quarters of the fun of adventure programming is dreaming up
bizarre and unexpected descriptions of the scenario, monsters, and
opponents. Read hooks by J.R.R. Tolkien, Anne McCaffrey, and
C.S. Lewis. Read some old mythology and look over some fantasy
calendars; you'll be surprised at the ideas you'll get.

Finally, you'll need some good examples. This book provides
them. I provide the full listing for a new adventure program called
Basements and Beasties. Each chapter describes some detail in the
construction of this program and gives some options that you may
wish to take. No doubt, this introductory program will play only a
foundational part in your own, much more complex adventure pro-
gram.
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WHAT WILL YOU LEARN?

Games are fun, but life is more than just fun and games. So
there are some special programming techniques that you’ll gain by
the end of this exercise; you'll never feel like you are studying in the
process!

For one thing, you'll learn the wonders of structured program-
ming. That sounds formidable, but don’t worry. All it means is that
you'll experience the joy of knowing where to find a given sub-
routine in a long program without having to pick the whole program
apart line by line. By the end of the book, you'll wish you had written
all of your personal programs with some structure. It’s easier than
you think. (Incidentally, please permit me the use of the term
“structured programming” in a much more general, nontechnical
sense than is usually meant. Those students of the more formal
definition might otherwise wonder if I know what I'm talking about
at all)

You'll also learn many methods of memory economy. Adventure
programs are, to put it mildly, memory hogs. They eat bytes with
long text descriptions, vocabulary lists, and map tables. Remember
that the earliest were for big computers. If you have disks and disks
to spare, memory is no problem. But, we're writing for a tape-based
16K TRS-80. You'll learn how to conserve and still get what you
want.

One final thing you'll learn a lot about is man/machine interface.
By this I mean how well your program understands inputs from the
keyboard and how well it responds. You'll get an education in how to
make a simple machine seem far more intelligent that it really is.
You'll learn to tailor your program to enhance that link between the
scenario and the participant—the sense that the player is really
there in that maze, desert, burning fort, or Martian dome.

If by now I have sold you on the benefits of writing an adventure
program, then you're ready. Grab a pencil and paper, switch on your
computer, and get ready to make the imaginative leap.



Chapter 2

Mapping a Basement Scenario

The primary function of an adventure program is to surround the
player with an artificial world, a preprogrammed environment with
which he can interact. This substitute environment is effected by a
series of textual descriptions and sustained by the presence of
objects that can be lying about. This artificial realm is called a
scenario.

The type of scenario depends on the imagination of the pro-
grammer. The original, classic scenario is the underworld cavern
environment, in which the player fights mythical beasts to obtain
treasures—a medieval land of magic, swordplay, and stone. The
sample program in this book, Basements and Beasties, makes use of
such a scenario. There are many other possible scenarios, as tradi-
tional or as bizarre as the programmer cares to make them. It all
depends on your ability to write creatively; if you can describe it, it
can be a scenario.

For instance, consider the following possible scenarios:

@ The player is trapped in a haunted mansion. He must find all of the
treasures hidden in the musty house, while ghosts and ghouls of
various sorts hide behind every door.

@The player is lost in a zoo after closing hours—and all of the
animals are loose. He must face hungry lions, muscular apes, and
angry ostriches as he searches for various items.

® The player is breaking into a top-secret government installation
after dark. He must find a number of confidential documents and not
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be caught or killed by the many security devices active on the
premises.

@®The player has crash-landed on an alien planet. He must avoid
attacks from the hostile natives while attempting to locate impor-
tant pieces from his ship’s engine, pieces that were scattered on
impact.

As you can see, an adventure scenario may be set just about
anywhere-—as long as there are three parameters active. The first
parameter is the background itself, a large environment with room
to move about. The second is a set of objects to pursue and locate as
the primary goal of the game. The third is a host of obstacles, both
living (such as enemies to fight) and inanimate (such as locked
doors) to add to the difficulty of the game.

The first of these three factors must be designed before work
on the program can progress very far; this chapter deals with
creation of the basic scenario. The second and third parameters are
handled in the next chapter.

The sample scenario I use is the underground cavern of Base-
ments and Beasties. Your first task is to learn how to map the
basement.

START WITH ROOMS T0 SPARE

A scenario, for example, our basement, requires the illusion of
size. This is accomplished by dividing the scenario into individual
units called rooms. These may correspond to actual rooms in a
building, separate caverns in a labyrinth, or clearings in a forest,
depending on the type of scenario. The adventure program as-
sociates each of these rooms with a descriptive paragraph and
usually with a short name of two or three words for easy identifica-
tion. The program provides information about what objects or crea-
tures (if any) can be present in the room when the player enters it.
The room is defined uniquely by a preprogrammed description of
entrances and exits, that is, directions in which the player must
move to reach or leave the room.

Once the programmer has the basic idea and sets out to create
his scenario, he starts with a set of undescribed, unspecified rooms.
Operating in BASIC with only 16K of user RAM, you are severely
limited in this regard. For the sake of demonstration, Basements
and Beasties consists of only twenty rooms. (Some refined
methodology and machine language can more than double this
number.) With these blank rooms before him, the programmer
begins to weave a web of pathways between them, until every room
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bears a spatial relationship to the others. In other words, he creates
a map of the scenario.

This map of pathways is based on the notation of motion most
commonly used in adventure programs, and that is compass-point
travel. When the player wishes to move, he may choose to go north,
south, east, or west. He may additionally move in one of the
diagonal directions, such as northeast or southwest. Finally, up and
down are also possible directions. This provides ten explicit travel
choices for the player. In mapping a room’s relationship to other
rooms, then, the programmer must define what will happen if the
player tries each of these directions while in a given room.

Figure 2-1 shows a diagram representing the possible move-
ment between four rooms. Use a large sheet of graph paper to draw
your own map. (A standard 20-by-28-inch sheet of desk blotter
paper is great for this.) Then, using a compass, or even better, a
plastic template available from an office supply store, draw every
room on the sheet. They need not bear any relationship to each
other this early in the task—they are simply spaced evenly and in
several rows. The map for Basements and Beasties, for example,
consists of five rows of four rooms each, for 20 rooms total. Leave
plenty of margin between rooms to allow for connecting lines to be
drawn from circle to circle.

GETTING FROM ROOM TO ROOM

Think a moment about what happens when you move about
from room to room. As you stand in a room in your own house, there
are basically three things that can happen if you choose tomove ina
given direction. These are:

@ You may end up in another room. If you go north, and there is a
north door, you will find yourself in a new room.

@ You may move about in the same room. If you are in a large room,
you may go north for quite a while and find that you are still in the
same room.

@ You may go nowhere. If you go east, you may run into a wall.
Ordinarily, you cannot go up or down, either.

Now, imagine that for each room you have a table listing all ten
possible directions the player could move. (You can do better than
imagine; look at Fig. 2-2.) In each empty space in the table fill in the
resulting location of the move. That is, the table tells what room the
player will be in if he moves in a direction. Such a device can be
called a travel table.

8



S CLOSET

FALL

Fig. 2-1. Symbology for the scenario map.

Now, let’s look at the three possibilities again. If the player is
in room 1, and a north move takes him to room 2, you may write 2in
the space next to NORTH. This is easily represented on your
scenario map; simply draw a line from room 1 toroom 2 andput anN
inside the room 1 circle right at the line. This symbolizes that if the
player goes north, he exits the room and ends up in room 2.
(Returning works similarly. An S by that line in room 2 indicates
that southward travel returns the player to room 1.)

Next, consider option two. In order to give a room the appear-
ance of size, it might be desirable to make certain directions result in
no exit at all-—simply endless travel. (This is good for outdoor rooms
like forests, trackless deserts, etc. When you consider mazes later,
this will also be useful.) In such a case, enter the same room number
beneath the direction word. If eastward travel leaves a player wan-
dering in room 1, place a 1 in that space. On the scenario map this is
designated by a looped arrow, as shown in Fig. 2-1. The E in the
center of the looped arrow indicates that eastward motion results in
no real progress. The player remains in the same, large room.

Now for the final option. If a player cannot go in a given
direction, either because a wall prevents him or because there is no
special opening available (in the case of UP and DOWN), this is
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indicated by entering a zero in the respective space. There is no
room 0; rather, the zero alerts the program of an attempt to travelin
an illegal direction. The program responds by printing a warning
message, such as, “You cannot go that way!” The player stays in the
room as before. In the scenario map this is the unspecified case; that
is, any direction not specified by some other symbol is assumed to be
an illegal direction with a value of zero in the travel table. In Fig. 2-1,
for instance, attempted motion from the closet going north will result
in no final motion and a warning message.

There is, in fact, a fourth option, which is a special case. What
happens, for example, if a westward direction leads the player off the
edge of a precipice and results in his death amid the rocks below?
Deathis not a destination room, and yet it certainly represents more
than endless motion or an illegal direction. Later, you'll see that a
special number can be assigned to such a death (a non-room number
of some sort, larger than the highest room number in the scenario) as
an indicator to the program. When the program encounters that
number in the travel table, it knows to assume that the player died
(the clod!) and must be resurrected if further play is desired. In
Basements and Beasties, for example, the largest room number is
20; so the number 22 represents death by fire, and 23 represents
death by falling. There is room for expansion.

CREATING A COMPLEX PUZZLE

Figure 2-3 shows the complete travel table for Basements and
Beasties. When you actually write the program in BASIC, this table
is resident as a series of data statements, one data statement per
line. It would be helpful, then, if you actually created a form like this
one, with as many lines as there are rooms in your scenario, and with
ten columns for motion.

Wait a moment! Aren't there supposed to be only ten columns,
one for each of the ten possible directions of travel? Why is there an
eleventh column, marked “Default?” Well, as you will see when you
tackle the problem of travel-command input, there are times when a
player is not explicit enough about his wishes. What if he types the
cryptic “GO IN,” or “JUMP?” What direction do they imply? For
such inputs you must decide a direction in advance, one of the
standard ten, that such an input command implies. This eleventh
factor is called the default direction.

In the eleventh column you do not put a room number. Rather,
you enter a direction number from 0 to 9; wherein 0 refers to
NORTH, 1 refers to NORTHEAST, and so on. It is up to you to

11
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second-guess the player about the most likely inexplicit command he
wil enter. For instance, in room 1, there is a hole in the ground. If
the player types “JUMP,” the most likely default response is
DOWN, or direction 9. Much later you'll see how this works in full.

Note that it isn't absolutely necessary to know the description
of all of the rooms in the scenario before you weave the web between
them. You may find it helpful, however, and if so, you may want to
read the section on room descriptions that appears later in this
chapter. The present section deals with elements of the web—the
structure and relationships that make for an interesting and complex
puzzle.

There are four factors that go into a clever scenario labyrinth.
These are a home base room, bottlenecking, mazes, and obstacles.
Let’s consider these one by one.

The first room to create for thescenariois known as home base.
This is usually a room that is separate or outside of the bulk of the
scenario. It serves several purposes. The program begins with the
player at home base; it is a launching-point for his adventure. Home
base is also a place of refuge and a place for safe storage of treasures.
The program scores the player on the basis of how many treasures
he safely conveys back to home base. This room may correspond,
say, to a camp in a hostile jungle, a spaceship in an alien city, or a
bathyscaphe in an undersea scenario. In Basements and Beasties
home base is a rock pit in which the player, an adventurous ar-
chaeologist, has broken through to an underground passage. The
home base room is room 1.

Home base represents one access-point to a large closed net-
work of rooms. It is traditional, but by no means necessary, to have
at least one more room that provides another access to the bulk of
the scenario. Basements and Beasties designates room 2 as an area
of ruins with a steel grate set in the rocky floor below—obviously,
another doorway into the underworld. A player can travel freely
between room 1 and 2, but most motion occurs through the web of
rooms underground.

You'll note from the travel table that most of the motion options
for rooms 1 and 2 are looped arrows. The purpose of this s to produce
the illusion of size. A player can go a long way in room 2 and still be
lost in the ruins. Only a few specific directions, however, lead to the
pit, home-base room 1. This is a good device to use in outdoor
sitnations. Note, too, there are almost no illegal directions (up is the
only one), since in a wide-open outdoor environment a person’s
travel is unrestricted. The zero value finds its use much more
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naturally in a closed environment, such as a building or a series of
caverns.

THE BOTTLENECK PRINCIPLE

The best way to heighten interest in a scenario is to limit the
player’s options as he moves. That is, he must be made to travel with
the maximum effort to see the rooms he desires. One way to do this
is by building sections of the web in branches, as shown in Fig. 2-4.
Once in room A the player has to choose what avenue to explore.
Once the choice is made, the player must return to room A before he
can examine a different avenue. This is a good example of
bottlenecking, forcing a player’s motion through a selected room.
The end result of several such bottlenecks is a sort of segmented
scenario with the ever-present possibility of the player finding new
sections previously unexplored.

Another method of bottlenecking is to provide one-way paths.
This is a situation in which a player traveling from room A to room B
cannot get back to room A by the same path; he is forced to take a
more circuitous route. In such a situation the scenario map notation
leaves out a return direction on the path line contacting room B. In
the travel table a zero takes the place of a return value—or perhaps a
different room altogether—as long as no direct return path to room
A exists.

Such situations can have various explanations in a scenario
description. Perhaps room A is high above room B, and the player

Fig. 2-4. Demonstration of room layout to produce the bottleneck effect.
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could jump down to B, but he cannot climb back up. Perhapsrooms A
and B are at opposite ends of a department store escalator. Base-
ments and Beasties has a ledge with a stream far below. You can
jump into the river and survive; but you'll never get back up to the
ledge. You get the picture: one way travel only.

A more subtle sort of bottleneck is a disguised path. The
strength of this sort of method lies in your ability as a describer.
Ordinarily, the room description paragraph tells what doorways or
paths are immediately visible around the player. These described
doors correspond to the travel table pathways. Nothing says that
you have totell everything, though! Perhaps if the player walks right
into those bushes to the north, he'll find a clearing (a new room) that
can’t be seen. Maybe that south wall isn’t as solid as it looks! There
may be a waterfall to the east—but, lo and behold, look what happens
when you walk right into the water! The idea is to hint at possible
secret doors and hope that you'll keep the player in the dark as long
as possible.

LOST IN THE MAZE

An adventure program is hardly complete without a maze. Of
course, the entire scenario is a maze in one sense of the word, but
let’s use the term in a narrower sense. An adventure maze is a set of
rooms with identical or very similar descriptive paragraphs, such
that it is very easy for the player to get hopelessly lost among them.
When the player is in such a room, he may choose to move in a
direction. If the description of his next roomis “YOU ARE LOST IN
A MAZE,” he wonders, “AmIin a different maze or the same one?”
It doesn’t take many maze rooms to make an effective mantrap!

Figure 2-5 shows a small three-room maze, identical to the one
used in Basements and Beasties. There are three basic elements to
a set of maze rooms. I have already stated the first: nondistinctive
descriptions. The second is a characteristic that need not be re-
stricted to mazes: it is the use of nonmatching directions in the travel
table. Notice, for instance, that a player moves from maze A to maze
C by traveling east, but he returns by going northwest, not west.
This pattern is carried on throughout the maze, such that the player
can never be certain of returning to a given room. You can imagine
the frustration, can’t you?

The third element is the extensive use of looped-arrow paths.
Notice that every maze roomhas three looped paths. The prohahility
is high that a player can make several moves in several directions,
thinking that he is visiting entirely new rooms—while in truth he is

16



NARROW
LEDGE

Fig. 2-5. A three-room maze with only one exit.

stuck where he is! The effective use of these three factors can
assure player confusion without very many rooms at all.

The standard method used by an experienced adventurer to get
out of a maze is to drop an object he is carrying, then move. If the
room is described as containing his dropped object, he knows that it
is the same room and that he has not yet left it. In this manner, he can
effectively tag each room with an object (as long as he has things to
drop!) to find his way around. The average adventurer, however,
almost never tries this the first time in the maze. Instead, he
attempts to run blindly, dashing about randomly until by sheer
chance he breaks out!

THOSE ANNOYING OBSTACLES!

Let’s take alook at the finished Basements and Beasties map as
it looks with all the bottlenecks and flourishes (Fig. 2-6). Ignore the
room names for the moment (I'll describe them later) and notice
some of the remaining features of the web.

Forinstance, remember what I said about directions that lead to
death, either in fire or by falling. There are three such rooms in
“Basements,” as you can easily tell from the travel table. Recall that
22 represents a fiery death and 23 represents death by falling.
Rooms 6, 10, and 20 have one of these two numbers as a travel-
result value. Look, now, at how they are represented on the
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Fig. 2-6. The complete scenario map for Basements and Beasties.

scenario map. A simple arrow marking the travel direction points to a
word describing the death: FIRE or FALL.

Realize, please, the manner in which this represents an ohsta-
cle. You need not tell the player that a direction is fatal; a hint is
enough. Let him make the foolish, presumptious error of testing it.
Room 101is a good example. The description makes both the stream
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to the west and the chasm to the east sound equally deadly. If the
player tries the stream, he finds a whole different half to the
scenario! This tempts him to suppose that perhaps there is more
adventure awaiting him in the chasm. He is wrong—dead wrong.

Death is not final in an adventure program; the player can be

resurrected, but usually he loses points. He is revived at home base,
far from where he died. That means he must make up the distance.
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There is, however, an entire class of special objects called
obstacles, whose sole purpose for existence is to impede the pro-
gress of the adventurer. The adventure program maintains a current
list of the status of these obstacles, indicating what pathways they
obstruct and whether they are still present. This list is, ordinarily
enough, called an obstacle list. It is an array of variables maintained
by the adventure program in BASIC.

There are two specific types of obstacles. The first type is the
living obstacle. These are usually monsters or beasts of some sort
that guard a specific room doorway. They usually are overcome by
some kind of battle with a given weapon. The second type is the
inanimate obstacle. These are things like doors and steel grates.
They are removed as obstructions by opening or unlocking with a
key. The value of these obstacles as frustrations is increased by the
need of special objects—weapons, keys—to deal with them. If, for
example, that all-important key is somewhere deep in the scenario,
there are several rooms and treasures that the player never sees
until he can find the key. Play-time and interest can be extended by
such devices.

Let’s study the inanimate obstacles first, since they are the
most complex to use. On the Basements and Beasties scenario map,
notice that there are three such obstacles: a steel grate separates
rooms 2 and 8, a door stands between rooms 6 and 12 and another
door divides rooms 4 and 11.

In the case of an ordinary door, there are really three possible
states. A door or grate may be closed-and-locked, closed-and-
unlocked, or open-and-unlocked. It simplifies handling such obsta-
cles if you reduce the number of possibilities to two. Thus, an
obstacle is either passable or nonpassable, a simple either-or
proposition. The way to visualize this in the scenario is to treat all
doors and gates as if they are in one of two possible positions. For
programming A can represent closed and locked and nonpassable
doors; B can represent unlocked and freely opened and passable
doors.

This simplification affects the realism of the scenario only
mildly, but it reduces the complexity of obstacle-handling signifi-
cantly. If the player tries to go in a direction blocked by a door with a
status of A, he is prohibited by a message that says, “THE DOORIS
CLOSED AND LOCKED.” If he tries to open or unlock it without
having a key, the program simply responds, “YOU HAVE NO
KEY!” If he does have the key, the program changes the door status
to B and informs the player by saying, “WITH A CREAK, THE
DOOR SWINGS OPEN.” Ever after, an attempt to move in that
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direction is successful—the door is ignored as an obstacle, because
its status is B. The player can shut the door and return the obstacle
status to A. A message proclaims, “THE DOOR SWINGS SHUT
AND THE LOCK CATCHES,” and any progress in that direction is
subsequently prohibited.

It is obvious that such an obstacle cannot simply be treated as if
it were an object sitting in a room. For a door opens onto two rooms;
if you open the door while in room A, that same door must now be
open if you are standing in adjacent room B. For every inanimate,
door-type obstacle then, there needs to be two status numbers: one
for each of two rooms affected. The program must simultaneously
change the status of both numbers if that door is opened or shut.

CREATING OBSTACLE-LIST ENTRIES

Let's see how the obstacle list and its various entries are
created to support the obstacles in an adventure program. Doing so
is one of the tougher tricks discussedin this book, so read carefully.

For each door there are two distinct sets of status information
that are necessary for the program to properly simulate the obstacle.
The following pieces of information are needed:

® What room is affected? This number, naturally, is A for room A and
B for room B, the two rooms divided by the door.

® What direction is obstructed? Perhaps the door is on the north wall
of room A and the south wall of room B. A direction number of 0 to 9
for each room specifies the direction of motion impeded.

@ What kind of obstacle is it? This is primarily to tell the program
what messages to print, for example, whether to print “THE DOOR
IS OPEN” or “THE GRATE IS OPEN.” This number is, of course,
the same for both rooms affected.

®Is the obstacle presently passable? This is the actual status indi-
cator that tells whether or not the door is closed and locked. Again, it
is always the same for both rooms affected.

Since this obstacle-status data is arranged in a list (the obstacle
list), there must be one more piece of information. There must be a
number telling the program where the other status information of the
two sets is located in the list. After all, once a door is opened, the
data needs to be changed not only for the room in which the player
stands, but also for the adjacent room. The program can find the
status information for the present room easily, but where is the mate
to this block of data?
®Where is the companion status data? For simplicity, the pair of
status blocks are always placed next to each other in the obstacle list.
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But, if you're looking at one, is the other one right after it or before
it? One simple number can answer that easily by representing
“hefore” or “after.” This data is the opposite for the companion
block. The first of the pair points to its companion as following,
“after;” the second to its mate, “before.”

You've just been through a difficult concept, so let’s review and
simplify a bit. For each door-type obstacle, two rooms are affected.
For each of the two rooms, there must be an entry in the obstacle
list. This entry must somehow convey five facts: the room number,
the direction blocked by the obstacle, the kind of obstacle, the status
of the obstacle, and the location of the other entry in the list.

All of these facts can be represented by numbers: two sets of
five numbers.

There is fortunately a simpler, more compact way to handle all
of these numbers. You can condense all five of these relatively small
numbers into one large number. How? Because you can break a
large integer into its many digits and allot one or two digits for each
piece of data. This is extremely helpful in saving memory space and
comes in handy in several places throughout an adventure program.

Figure 2-7 shows the standard format for an integer in Mi-
crosoft BASIC. Such an integer has a range of from —32768 to
+32767 inclusive. That s, the largest integer you can create has five
digits and a sign of plus or minus. As long as the fifth digit is no larger
than 3, and as long as you are careful about the fourth digit, you can

MOST POSITIVE INTEGER

+
IMPLIED 3 2 7 6 7

MOST NEGATIVE INTEGER

Fig. 2-7. How a standard Microsoft BASIC integer can be broken down for
efficient data storage.
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SIGN | DIGIT | DIGIT | DIGIT pDiGIT | DIGIT
FIVE FOUR | THREE | TWO ONE

+NONPASSABLE ROOM NUMBER
—~ PASSABLE (1-20)
OBSTACLE
TYPE
1=CREATURE DIRECTION
LOCATION OF MATING 3_..88’825 BL?&.Q‘)ED
OBSTACLE LIST ENTRY

0=PREVIOUS ENTRY
1=NO MATING ENTRY
2=NEXT ENTRY

Fig. 2-8. Assigning significance to integer digits to produce an obstacle list
entry.

deal with the individual digits and assign any significance or use to
them that you need.

Figure 2-8 demonstrates how this method (I call it integer
analysis) is used to assemble an entry for the obstacle list. First, you
need a room number. Room numbers can be as large as 20 (even if
there are more in your program, you are not likely to exceed 99).
The point is, you'll need two digits of an integer to tell the room
number. The first and second digits will do.

Next, you'll need the direction blocked. There are, remember,
ten possible directions: the eight compass-points plus up and down.
You can assign these numbers of 0 through 9 and plug the data into
digit 3. The fourth digit can represent the obstacle type, if you
arbitrarily assign numbers from 0 to 9 to them. Digit 5 points to the
location of the companion list entry (arbitrarily, a 0 means the other
entry is before this one, and 2 means it is after).

Finally, how can you tell if the door is open or closed? Let the
sign be the status indicator. If it is positive, the obstacle is non-
passable (closed); if negative, it is passable (open). Useful, right?

The obstacle list——at least as far as inanimate, doorlike obsta-
cles are concerned—consists of a series of integers in pairs, each
pair representing a given door. Figure 2-9 shows this portion of the
Basements and Beasties obstacle list as it appears when all of the
blocks are closed. Take a few moments and try to understand what
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ENTRY 22902
ENTRY 2808
ENCIRY ' 23306
EN{;’TRY 3712
ENTRY 23404
ENTRY
6 3011
’J\WW——“__J

Fig. 2-9. The first portion of the obstacle list.

each digit represents. For instance, the first list entry is 22902. You
should be able to see that:

@The affected room is room 2.

@ The blocked direction is direction 9 (DOWN).

@®The obstacle is type 2 (grate).

@The companion-list entry is affer this one which 2 indicates.
@The grate is closed and locked, which a positive value indicates.

Walk through entry 2 the same way. Remember that if a digit
value is zero, it can vanish altogether—at least on surface inspec-
tion. In entry 2 the value of the fifth digit is zero; so the entry appears
as a four-digit number. Don’t worry, think of it as a five-digit number
with an invisible, leading zero.

How could an adventure program use the obstacle list to pro-
cess obstructions? Let’s say the player types, “CLOSE DOOR.”
The program knows two pieces of information: it knows the room
where the player is (it always keeps track of this), and it knows that
the player wants to close a door, a type 3 obstacle. The program
proceeds to hunt through the list, looking for an entry that matches
these two criteria. Having found it, the program can set the value of
that entry as positive, closing the door for that room. Using the fifth
digit the program knows where to look for the second entry it needs
to change. Once found, the second entry is also set positive—and a
message is printed saying, “THE DOOR SWINGS SHUT AND THE
LOCK CATCHES.”

There are all sorts of peripheral factors to check, of course.

X~ £1. Alan
What if the door was au\,uuy closed? The program could tell "“’ the

sign of the list entries and would say, “IT'S ALREADY SHUT! y The
list entries are the key to the seeming intelligence of the program.
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One more thing needs to be said about the obstacle list. Since
the entries require updating from time to time, the list cannot simply
be a series of numbers in a DATA line in BASIC. The original values
may start off in DATA statements, but these must be loaded into a
variable array, so that the individual elements can be set positive or
negative as the player interacts with his environment.

BEASTIES AS OBSTACLES

If you’ve managed to survive this far, you'll have no trouble with
the second type of obstacle—the living obstacle. Creatures that
inhabit the scenario are much easier to use in the obstacle list.

Consider, first, that doors required two entries in the obstacle
list, because in a sense they occupied two rooms at once. Creatures,
however, are objects that exist in only one room at a time. Thus (joy
of joys!), creatures only require one entry each in the list. There is
no need to worry about changing two numbers if a creature’s status
changes.

Take alook at the scenario map again in Fig. 2-6. You'll soon see
that there are four creatures acting as obstacles: one each in rooms
4, 6, 14, and 18. For instance, a player is prevented from traveling
northeast in room 4; the Giant Mantis will not let him pass! If the
player is in room 5 trying to get to room 4, the Mantis lets him enter,
as if the player is sneaking behind him. This reiterates the fact that
creature-type obstacles are one-way obstacles only. That's why
they only need one entry in the list.

Now, look at the completed obstacle list for Basements and
Beasties given in Fig. 2-10. The original three pairs of passive-
obstacle entries are there; four new single entries, one for each
creature, have been added.

The first creature list entry is 11104. Analyze what it says
concerning the obstacle. The block is in room 4. It obstructs motion
indirection 1, which happens to be northeast. The obstacle is type 1,
which I'll arbitrarily define as “creature.” The creature is present,
blocking the passageway, since the value of the entry is positive.
Now, what about the fifth digit, which was used to point to a second
entry? You don't have a second entry with creatures; the fifth digit is
set to 1, which means that there is only one entry involved in this
obstacle. Later, when you study the actual BASIC code that
analyzes list entries, you'll see why the numbers 0, 1, and 2 were
chosen for digit 5.

The three other single entries work in the same manner.
Searching down through the list, the adventure program can under-
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1 22902 STEEL

2 2808 GRATE

3 23306

4 3712 DOGR

5 23404

6 3011 DOOR

7 11104 MANTIS

8 11118 IGUANA

9 11714 SPIDER
10 11306 TERROR

Fig. 2-10. Complete obstacle list for Basements and Beasties.

stand that a given single entry represents a specific creature in a
specific room guarding a specific pathway. It cannot tell whether it is
a mantis or a spider from this list; that distinction is handled by a
different list, which you'll soon see. At this point it is helpful just to be
able to register this much with a short series of numbers.

How does a creature-type obstacle change status? Thatis, how
does it become either passable or nonpassable? The standard means
for this change is battle. If the player has the proper weapon and the
random factors of the fight go well, he slays the beast, and the
obstacle is resolved. If he fails, the creature continues to guard the
path. I don’t deal with how battles are fought until Chapter 7, but the
part of the program that decides the outcome of the battle is respon-
sible for setting the list entry to negative, indicating a passable
obstacle.

Both living and inanimate obstacles are effective in promoting
the realism of the adventure scenario. You should appreciate,
though, that this luxury is not purchased cheaply. Now you have a
variable array that needs maintenance. In fact, every time the player
tries to move, the obstacle list must be consulted to see if the
attempted direction is blocked or not.

An important consideration of programming that is active in any
program of complexity is the trade-off between features and speed.
Adding obstacles to a scenario is possible, but the programmer pays
for it in processing time. If you're clever, you can keep this handling
delay to a minimum.

LOCATING OBJECTS

An adventure scenario consists of more than just rooms, path-
ways, and doors. There are objects to find as the player wanders
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through the artificial environment you paint about him. Objects vary
in their uses, though. A key that opens a door (and thus renders an
obstacle passable) is one sort of object. A sword that slays a certain
beast (thus rendering a completely different obstacle passable is
another. There are also treasures and other incidentals, such as a
lamp or torch to light the way in a dark basement. I've even hinted
that creatures are more than obstacles—they are objects in their
own right.

In an adventure program there are two factors that define an
object: its existence at a specified location (a given room), and its
usefulness under special circumstances.

The second of these two factors is wholly arbitrary and is up to
the programmer. When a programmer writes a routine that handles,
say, the opening of doors, he knows that he has to designate one
object as a key. He may choose to treat object 11 as a key. The only
thing that makes it a key is the way the open-door routine works.
The programmer writes it so that it looks for the presence of object
11 before it can open a door. This goes for other types of objects as
well. The only thing that makes object 4 a treasure is that the scoring
routine looks for that object number and awards high points for
finding it. Object usefulness is flexible.

The location of an object is simpler to handle. In an adventure
program the writer simply sets up a variable array in BASIC, as-
signing one variable for each object in the scenario. Then he merely
sets each value to the room number corresponding to its location. If
object 10isinroom 6, the array variable for that object is set at 6. For
instance, if the variable for object 3 equals 18, it means that object 3
is lying on the floor in room 18. Simple!

Most objects in a given scenario are made to be found and used
by the player. That is, each object starts off at an initial location, a
given room. When the player enters that room, the program tells
him that the object is lying there. He may choose to leave it there, or
he may use a TAKE command to pick the object up and put it in his
hypothetical carrying sack. In this way he can cart treasures out of
the basement and back to home base where he is awarded points for
them. (There is, usually, a programmed limit to how many objects
can be carried in the sack at one time.)

This raises a good question. When the object, say, a key, is on
the floor, it is in the room. Where is the key when the player is
carryingit? That is, what value is placed in the array variable for that
object? This ambiguity is answered by assigning a fictitious room
number to the player’s carrying sack. Thus, objects are being carried
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when their location number is the number of the sack. If the player
drops the object, its location number is immediately changed to the
present room number.

In Basements and Beasties, which has 20 rooms, the unused
number 21 is assigned to the player’s carrying sack. (Yourecall that
unused numbers 22 and 23 are assigned to violent deaths that result
from travel in dangerous directions.) The sack number is a helpful
item. If the player wants an inventory of what he is carrying, the
program simply searches through the object location array, looking
for any object with a location of 21. These objects are listed.

HELPFUL SCENARIO VARIABLES

An adventure program such as Basements and Beasties makes
use of several variables and arrays to keep track of things. I just
discussed one such array, the array of locations for objects. I refer to
this as the object status array. It has 16 elements in it, since the
program has 16 distinct objects. In describing a room, the program
must always make one pass through the object status array to see if
there are any objects present to describe.

There is a sense in which the player, himself, is an object, at
least since he can exist at a location and move from room to room.
One variable must always be maintained, apart from the previous
array, to keep track of the player’s present room number. Let's call it
the player location variable. This variable is updated chiefly by the
player’s use of motion commands.

There are a handful of other useful variables that you need to
update from time to time. You need a counter to keep track of the
number of steps the adventurer has taken, since this canfigureinto a
scoring scheme. There should be a variable to tell how many objects
the player is carrying, so that the program can refuse to let him pick
up more than he can bear. Another variable should keep track of how
many times the player has been killed, again for scoring purposes.
And there are a couple of lesser counters that I touch on later.

I already spoke at length about another important array—the
obstacle list. The size of this array depends on the scenario map and
the types of obstacles created. Reference is made to it every time a
motion is attempted.

One last array needs to be described at this juncture. When the
player first steps into a room, the program gives a paragraph-long
room description to orient the adventurer. After that first visit,
however, the player should not be bothered with a long, drawn-out
description. Rather, the program should note that he has already
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been there once and given him a very abbreviated description, a
simple room title. (If he wants the long description again, naturally,
he can request it.)

For this feature to work some sort of flag needs to be main-
tained for each and every room, a flag that indicates whether or not
that room has been visited before. The variable is a zero until the
room is entered; it is then permanently set to a one. This array of
variables is the room status array. The existence of this array is also
helpful in scoring, which usually includes some points for number of
rooms explored.

This simple yes-or-no sort of flag can simply occupy one digit of
the integer stored in the element of the array, allowing the other
digits to represent other characteristics of the room. Integer
analysis makes this sort of expansion possible.

So what do you have? Figure 2-11 shows all of the variables and
arrays used by Basements and Beasties, each with a short explana-

VARIABLE DEFINITION
CT(0) PLAYER LOCATION VARIABLE
CT(1) NUMBER OF STEPS TAKEN
CT(2) NUMBER OF OBJECTS CARRIED
CT(3) TOTAL DEATHS OF PLAYER
CT(4) SLAIN ORCS x 25 POINTS
CT(5) NUMBER TO BE ANALYZED
CT(6) ~ CT(11) NUMBER TO BE SYNTHESIZED
CT(12) ORC APPEARANCE COUNTER
TX$(0) - TX$(1) ROOM DESCRIPTIONS (TEMP.)
TX$(2) - TX$(3) INPUT WORDS (TEMP.)
DA(1) TRAVEL TABLE VECTOR
DA(2) WORD TABLE VECTOR
DA(3) MESSAGE BLOCK VECTOR
DA(4) OBJECT DESC. BLOCK VECTOR
DA(5) ROOM DESC. BLOCK VECTOR
RM(1)-RM(20) 'ROOM STATUS ARRAY
0B(1.0)-0B(16,0) OBJECT STATUS
0B(1.,1)-0B(16,1) OBJECT LOCATION
BK(1)-BK(10) OBSTACLE LIST

Fig; 2-11. Array variables used in Basements and Beasties.
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tion. Some of the lesser variables will be described at length in the
chapters to come.

DESCRIBING ROOMS AND SCENES

So far we have been speaking of the adventure scenario in very
general, structural terms, to convey the methodology or logic behind
the idea. When the player enters the scenario, though, he does not
see a web of interconnected circles, nor does he see lists and tables.
His impression of the scenario is created and sustained entirely by
the printed descriptions that are displayed on the computer monitor.
These descriptions “paint the picture” in which the player moves and
interacts; all of the arrays and tables merely serve as the mechanics
to call the proper descriptions.

As the programmer creates a scenario, he starts with a central
theme around which to build. I already suggested quite a few—
caverns, haunted mansions, office complexes. Once the program-
mer has an overall environment, the rooms themselves are implied
and come easily. The programmer makes a sheet, numbered from
one to the maximum number of rooms (in Basements and Beasties it
is 1to 20). Next to the numbers he lists all the different sublocations
a player might expect in this type of scenario.

Suppose your scenario is a large office complex. You might list
the secretarial pool, the boss’ office, the cafeteria, the water cooler,
the lavatories. Then there are various halls, the lobby, several
offices differentiated by color or size, perhaps a copy-machine room.
Once your mind is active, you can probably come up with far more
locations than your maximum room count allows! Remember to
assign room 1 to your home base, the access point to the larger
scenario. In this example, room 1 is probably the lobby, or even the
sidewalk or parking lot outside of the building.

Figure 2-12 gives the room list for Basements and Beasties for
ease of reference. As you think of rooms, you'll think of little
distinguishing characteristics that will be incorporated into the room
descriptions later. These may be noted next to the short titles, as
shown. The ideais to generate one or two-word identifiers for each
room. These are used as the short-form description that is printed
for rooms previously visited.

For each room a paragraph description is stored in a DATA
statement in the adventure program. The short-form title is also
stored along with the larger description. When the player moves into
a given room, the program accesses the corresponding DATA
statement and retrieves these two pieces of data. Then, depending

30



‘seljseag pUB SjuswWaseyq 104 1) WooY ‘g1-g ‘b4

ONITIVH A8 HivaA 154 OIEVASY 91 180d gavnNo 8
34id AG Hiv3J [44 g 3ZVIN S1 LINVA JHNSY3IHL JA
ADVS-AHYVD le WOOH d3Md00 142 WOOH 310VdO 9
SH3IEGWNN WOOY .0dN3<d. NOOH HONNMT €l WNOOH 8WNOL S
3HIdS AH3Id 0¢ 301440 cl 31L1vd 1501 4

JAVO AWVILS 61 1130 L WOOH SNOdV3m €
NHIAVO ANITS 8L 39037 MOYHYN ot SNiNY c
WV3d1lS ONIHSNY L vV 3ZVN 6 1id 40 WOL104d -
NOOH # WOOoY # NOOY #




on whether or not the player has seen the room before, the program
displays either the long or short description. There is also a LOOK
command that specifically requires a reprinting of the long descrip-
tion. After the room list is created, the next test is to write the long
description paragraphs for each room.

There are five rules or guidelines concerning the writing of
room descriptions. The first is their special format. The entire text
of the paragraph must fit on one BASIC program line, sharing that
line with the BASIC instruction DATA and also the short title, with a
separating comma. This limits the length of the paragraph to about
240 characters, or just over three and one-half lines of text on the
TRS-80 monitor. If any commas or semicolons form a part of the
paragraph, the whole paragraph must moreover be enclosed in
quotes, to prevent BASIC from misinterpreting the DATA state-
ment. The paragraph may also include line-feed characters (which
the programmer inserts by typing a shifted down-arrow) to improve
the appearance of the paragraph and prevent words from being split
in two between lines of text.

The second guideline is the inclusion of pathway hints. It is only
fair for the description to say, explicitly, “THERE IS A DOOR TO
THE NORTH AND A HALL LEADS EAST,” in most cases. If no
such hints are given, the player is forced to try all ten possible
directions to find exits. Note, though, that not all exits need be
explicitly told; an occasional room description can even say,
“THERE ARE MANY DOORS AROUND HERE.” Remember the
concept of disguised pathways, too. If the north wall is merely a
mirage and really is an exit, just say, “THE NORTH WALL SHIM-
MERS WITH A STRANGE GLOW,” and let the player experiment
on his own.

A third guideline is the use of nonoriented language. By this, I
mean that the programmer must not make any assumptions about
how the player entered the room he is now examining. For instance,
imagine a room with two entrances: a trap door above and a steel
grate in the wall. Itis foolish to display, “YOU FALLINTO A DARK
SLIMY ROOM.” Even if the trap door is the first means of entrance
to the room, there is also the grate. What if the player re-enters the
room through the grate later on? The description would be inac-
curate. Always describe the room as if the player has suddenly,
inexplicably, appeared in the midst. Describe most entrances and
exits—even the one he most likely just crawled through.

Afourth guideline is to avoid the use of nonexistent objects; that
is, objects not supported by the program itself. This is a hard task
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and may even be impractical at times, but keep it as a goal. You are
bound to get into trouble if you describe some object as a part of the
scenery that is not found in the object status array. Why? Because if
the description says it’s there, the player is bound to try and pick it
up! If your program does not make allowances for its existence, that
pseudo-object fouls up the realism of the simulation by refusing to
budge, or even causing the program to crash. If you must include
unprogrammed objects in your description, add something to dis-
courage the player from trying to move it. If your office scenario has
a water cooler, say, “THE WATER COOLER SITS NEARBY,
RIVETED TO THE WALL.” At least there is then an explanation, if
only a lame one, for the object’s refusal to act like an object.

A fifth and final guideline is to use creative description. Much of
the realism of the adventure program depends on your flamboyant,
misty-eyed story-telling. There are many ways to make a descrip-
tion stick in the player’s mind. The use of color, size, and shape to
describe aroom are all helpful. Is the room cold and clammy, hot and
dry, dark and foggy, tainted by magic, smelling of sea weed, dusty
and in disarray? The idea is to convey images above and beyond the
explicit words you use.

One of my favorite descriptive devices for adventure scenarios
1s incongruity. That is, I always have a few rooms that don’t seem to
fit at all with the time-period or the mood of the scenario. (This goes
for objects and creatures, too.) For example, Basements and
Beasties describes an underground troll kingdom that for the most
part sounds mythical—caves, an oracle room, a room for armor—
but I threw in an office and a lunch room, just for surprises. Almost
anything goes when it comes to holding the player’s interest. Why
shouldn’t your Martian city scenario have a large, red building with a
flying fire-engine in it? Why shouldn't your undersea Atlantis
scenario have a shower stall that sprays air? Why shouldn’t your
old-West scenario have a corner horse-feed station with pumps that
dispense “regular” and “premium” hay? You get the idea.

One final word on room descriptions has to do with mazes.
Remember that all rooms in a maze should have identical descrip-
tions, to befuddle the wandering player. This can usually be a short
phrase like “YOU ARE LOST IN AMAZE,” or “HERE ISASMALL
FEATURELESS ROOM.”

In maze rooms the long and short descriptions need to be
identical. Why? Well, because you don't want the player to know in
which maze room he is. If one room gives him a shorter description,
he knows he's been there before. Just remember that even if you call
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those rooms something different in the room list—maze A, maze B,
maze C—when the DATA statements are written, the long and
short descriptions must be identical.

DESCRIBING WHAT YOU'VE FOUND

Once the room list is compiled and the room descriptions
written, it is time to create the object list with its descriptions. When
the player enters a given room, the room description is given. If any
objects are lying around a line of description is displayed for each of
these. This line of description is the long description of the object.
Each object also has a short description (analogously to rooms),
which is a one or two-word title. This title is used when the player
enters the INVENTORY command to examine the contents of his
sack.

Figure 2-13 shows the object list for Basements and Beasties.
The list is broken up into three basic divisions, each of whichI treat in
detail.

The first group of objects to create are treasures. These are the
objects of worth, finding them is the primary goal of the adventure.
In hypothetical spy adventures these treasures are confidential gov-
ernment documents that must be stolen. In Basements and Beasties
they are simply objects of monetary worth, such as one might find in
dwarfish halls of stone.

To simplify things it is a good idea to make the treasures as
unalike as possible, at least with regard to their names. This is to
avoid confusing the adventure program when it tries to determine to
which treasure the player may be referring. Use names that suffi-
ciently distinguish between the two. For example, each jewel-type
treasure is referred to by a specific type of jewel; the player can’t say
“TAKE JEWEL,” he must specify, “TAKE DIAMOND.” Even
object 1 is not just a jewel, but a jeweled crown.

Remember the principle of incongruity to make things in-
teresting. It would be perfectly acceptable and fun to have a dwarfish
transistor radio as a treasure.

The next group of objects to create are the tools. These are
objects that are necessary to overcome the variety of obstacles that
hinder the adventurer from recovering the treasures. What kinds of
tools you create depend largely on your obstacles and vary from
scenario to scenario. In cavern-oriented adventures, such as Base-
ments and Beasties, it is customary to have a lamp or torch, since
underground environments usually necessitate that kind of tool. The
program is tailor-made to limit the player’s subterranean motion
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based on his possession of the lamp or torch. Without the tool room
descriptions are prohibited and a message displayed: “BE-
WARE! IT IS VERY DARK IN HERE!"” Of course, this sort of tool
is out of place in an outdoor scenario in daylight conditions.

The key, too, is standard fare, because of door-type, inanimate
obstacles. The program refuses to open the door or grate unless the
key is in the player’s carrying sack. If the programmer really wants
to get fancy, he can have two or three kinds of keys, each matching a
specific door.

The other tools are weapons, basically. The program is con-
structed so that certain creatures are destroyed only by one or the
other weapon. Depending on the scenario, these may range from
shotguns to laser cannons. They may even seem harmless in them-
selves. A simple bottle of seltzer water may be just the thing to stop
a marauding robot creature in its own rust!

The last group of objects to dream up are the creatures. These
are the monsters that guard the passageways of dim caves, the
fully-human Huns of a barbarian scenario, the Martians, or the secret
police. Remember that these beasts are also obstacles, and every
one of them should have an entry in the obstacle list. When one of
them is overcome by fancy swordplay, the obstacle list entry is
changed, and the creature is considered dead. (To simplify things the
creature usually vanishes rather than allowing a dead body to remain
behind. This is done by changing the location of the creature in the
object status array to a zero, which amounts to sudden nonexis-
tence, since there is no Room Zero.)

How many objects of the three kinds may you have? That is
limited by memory restraints, since every object requires an object
status array variable, a long and short description, and programming
to handle the special cases that relate to its function. Too many
treasures take the fun out of the search; too many creatures are
boring. The number and proportions of objects listed in Fig. 2-13 are
probably optimum for a scenario of only 20 rooms.

I've already mentioned that, like rooms, all objects have long
and short descriptions—long ones for looking in a room, short ones
for inventory listings. What guidelines can you suggest for these?

The short descriptions are only one or two-word names for the
objects; these are simple. The long descriptions are usually any-
where from 48 to 96 characters long, which is up to a maximum of a
line and one-half of monitor text. Usually they are in the form of
“THERE IS A BLANK LYING HERE.” Treasures usually have
descriptions ending with an exclamation point, such as, “THERE IS
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A BEAUTIFUL STATUE HERE, ENCRUSTED WITH EM-
ERALDS!” Creatures, too, usually evoke an exclamation, and the
description is even more insistent, as in'“A GIANT WOOLLY
MAMMOTH STANDS NEARBY, READY TO CHARGE IN
FURY!”

The only warning is to avoid any mention in the description of
the immediate surroundings, since that may change. Don't say, for
instance, “THERE IS A SHINY COIN IN THE CASH REGISTER,”
because the player may take it and drop it in some other room that
has no cash register. This rule may be bent a bit in the case of
creatures, since they usually live out their existence in one room
only. (Helpfully, a part of the program prevents the player from
picking up that fire-breathing dragon and carting him off in his sack!)

Once you've created your object list and written the descrip-
tions, you need to add notations to the list, telling in which room each
object starts at the beginning of the game. Notice this column of
information next to the object names in Fig. 2-13. Where you choose
to place the objects is up to you, but here are a few random
suggestions. Tools should be placed where they slow progress down
a bit. That is, if your scenario has a key, don't give it to the player
right off; put it deep into the scenario, so he has to retrace his steps
to use it. Put the treasures behind locked doors and behind angry
creatures, but leave a few out, unattended, just to whet the player’s
appetite.

This series of room numbers telling the starting places of
objects will later be committed to memory—RAM—in the form of a
DATA statement. At the start of the program an initialization routine
simply reads these numbers and stuffs them into the brand-new
object status array.

THE UNEXPECTED ENEMY

Before I tie a tail to the present discussion of creating a
scenario, there is one more item for the program to support. To
explain, consider the fact that the creatures already mentioned are
pretty tame and fairly docile. True, they are ferocious enough when
attacked, but that's just it—they are passive. The adventurer can
walk around in the same room as that giant mantis without fear, as
long as he does not attack the beast. Now, what kind of challenge is
that?

What the program needs is what I term a fenacious creature.
Tenacious implies that the creature refuses to leave the adventurer
alone. There are three characteristics of such an enemy: it wanders
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T
OBJECT é DESCRIPTION %@OFWN%,

T
1 R CROWN OF JEWELS 4
2 E GOLDEN CUBE 7
3 A DIAMOND BEETLE 20
4 S SILVER BELT 11
5 u PLATINUM RING 5
6 R POLISHED ONYX 19
7 J1E COIN WORTH MILLIONS 7
] S HOURGLASS 6
9 (T) TORCH 2
10 o MAGIC AXE 3
77 L KEY 10
12 S ENCHANTED GRENADE 12
13 c GIANT MANTIS 4
14 R HUGE IGUANA 18
15 E WHITE SPIDER 14
16 /T\ NAMELESS TERROR 8

U

R

E

S

Fig. 2-13. Complete object list for Basements and Beasties.

freely about the scenario, it attacks without provocation, and it
follows the player from room to room.

You can see how formidable an enemy this sort of creatureis. It
wanders around randomly, until it ends up in the same room as the
adventurer. It attacks! The player tries toflee, but to his dismay, the
foul creature keeps up with him! The player must conquer or be
eaten.

Clearly, the tenacious creature is totally unlike the other, pas-
sive, creatures, and it is handled much differently. (Study the
specifics of the creation of the dreaded Orc in Chapter 4.)

THE NEARLY FINISHED SCENARIO

As you read this paragraph, congratulate yourself on how far
you've come (provided you aren’t skipping pages). This chapter
contains the meat of adventure programming, from the standpoint of
form. The remainder of the book actually deals with taking the
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concepts of this chapter and coding them into BASIC. If you've been
sweating through it all and wondering why you ever thought you
could handle this sort of programming, relax—the hard foundational
work is over.

Let’s briefly review the elements of an adventure scenario. As
we list each one, see if you can recall what its purpose and function
are. If you're foggy about a couple of them, flip back and review them
in detail.

1. A scenario is made up of rooms.

®You need a room list of short room names.

@You need a long description for each room.

@You need a room status array to indicate if a room is unvisited.
@ You need a scenario map of room interrelations.

®You need a travel table defining entrances and exits.

2. A scenario is made complex by obstacles.

@You need living obstacles such as creatures.

®You need inanimate obstacles such as locked doors.
@®You need an obstacle list defining the obstructions.

3. A scenario is occupied by objects.

@ You need treasures, tools, and creatures.

@ You need an object list of short object names.

® You need a long description of each object.

@ You need an object status array to locate the objects.

Now, at last, you have a feel for much of what it takes to make

an adventure program operate. Let’s go on now to the next chapter
and see how to use this foundation in BASIC programming.

38



Structuring the Program

Most programming in BASIC is, sadly, haphazardly done. The
programmer starts out with a simple idea, and he writes a simple
program. Then, as he adds features to his program, the code grows
rapidly and unevenly. At last he is finished, and he has a massive,
unwieldy piece of work. The program runs, miraculously enough,
but if it needs an improvement here or a correction there, the
programmer is stuck. Where is that printer driver subroutine?
Where is the routine that updates variables? Lost in a maze of
unchecked program growth, the programmer cannot find what he is
after.

The writer of an adventure program cannot afford to be sloppy,
for at least three reasons. One is memory space. A program like
Basements and Beasties needs every byte it can find. Sloppy code is
likely to contain redundancies (that could be better organized sub-
routines) and other items of inefficiency. Speed is another factor. An
adventure program tries to do alot of processing in as short a time as
possible. Sloppy code is very difficult to streamline. Modification is
the final factor. Someone adventurous enough to write an adventure
program will eventually want to upgrade it in some way—extra
rooms, new creatures, more treasures. Sloppy code makes program
improvement a matter of more frustration than it is worth.

For these reasons, from the very start of your task, do your
programming in a very disciplined and thoughtful way. Abide by the
rules and partake of the advantages of what is known as structured
programrning.
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HOW TO BE STRUCTURED PAINLESSLY

Nothing sounds quite so ominous as structured programming.
In my mind it calls images of lengthy diagrams in obscure notation,
reams of flowcharting, and the like. It could put any would-be
adventure programmer to flight.

Actually, if you think about it, the rudiment of some sort of
program structure is right there in BASIC, staring up from the
screen. It is the line number. Think about it for a moment. In
Microsoft BASIC the programmer can use any line number from 0 to
65529 inclusive. What usually happens is that the programmer sim-
ply numbers his lines as 10, 20, 30, and so on. Then he squeezes
extra lines in between if he later needs to add program features.
Never does he utilize more than a minute percentage of the numbers
available to him.

What does this tell you? Simply this: if you have so many line
numbers that you can afford to choose them randomly, you can also
afford to choose them meaningfully. That is, you can assign certain
sets of line numbers to certain tasks. Then, if you ever need to make
changes, you know where to check the listing. Instead of scratching
your head and mumbling, “Hmmm, I think that routine was on line
639, or 369, or something like that,” you can know “That routine was
an initialization task; it is somewhere between 0 and 99.”

The first key to structured programming is putting the line
number to work for you. Use it, as in the example above, to organize
your program for easy readability. Later, you'll see how it will help
you speed up those important references to DATA statements.

The second key to structured programming has to do with
program flow. By this I mean the use of forethought in how a
program gets its work done. If you look closely at the flow of your
program, you'll see that there are many tasks that it handles simi-
larly, many repetitive paths. When you know what these are, you
can write the program so that there are sections of code that serve
for many of the program’s functions, not just one. That creates an
efficient, compact program—just what you need with only 16K of
available memory. There are two features of Microsoft BASIC that
make this sort of streamlining possible. One is the GOSUB-
RETURN feature, which gives you the ability to call subroutines.
The otheris the ONX GOTO feature, the ability to jump to handlers.
I take full advantage of these methods in Basements and Beasties.

Now, lest I stray too far into a general treatise on programming,
let's get back to your adventure program.
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WATCHING THE FLOW

Have you ever seen those drain cleaner ads on TV, the ones
with the transparent drainpipes? It is very easy to follow the flow of
the plumbing system if you have clear-plastic pipes. Wouldn't it be
nice if programming were like that? You could tell what sections of a
program get the most work-out.

Figure 3-1is a transparent-drainpipe illustration of the flow of an
adventure program. This sort of diagram is most helpful in dividing
the program into logical sections to simplify construction. Let’s
consider each pipeline and the part it plays.

The first section of the program is the initialization routine.
This portion of the code is executed only once and serves to set the
scenario to some predetermined starting state. What sorts of things
are involved in the initialization procedure? For one thing, any string
of numeric variable arrays must be created and sized properly. Then
those variables need to be set up to simulate the scenario properly.
The player-location variable must be set to the home-base room
number, for instance.

Several additional blocks of program code are made available to
the initialization routine to simplify the process. These are DATA

( INITIALIZATION )

v
v

| =—— =)

EXECUTIVE

Fig. 3-1. Transparent drainpipe view of the program flow.
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statements that contain the values necessary to preset those vari-
ables and arrays. One such is the obstacle initializatiors block. The
initialization code reads the values from this block and loads them
into the array known as the obstacle list (remember, the one that
deals with doorways and creatures). A second is the object initializa-
tion block. This contains all of the starting locations for all objects in
the scenario, which are loaded into the object status array. A third
block is the room initialization block. This is used to fill the room
status array, which indicates which rooms have been visited and
which remain unvisited.

One question that arises is this: why have along DATA list tofill
the room status array? Don'’t all rooms start off as unvisited? Can’t a
simple program loop be used to fill the room status array with zeroes
for this purpose? The answer to this question is future expansion. It
is conceivable that in the future there may be other status factors you
will need to keep track of for rooms. It makes sense to allow for
specific values to be loaded into the array, even though in this first
version of the program all elements equal zero. Remember that a
room status value could be broken into several digits in the future;
digit 1 could stand for the visit/nonvisit flag. Other digits could
represent other status flags. Accept for the moment that this may
prove helpful at some future date.

Now that the scenario has been initialized, the game canbeginin
earnest. The next section of code is called Executive. It is named this
because it is the part of the program primarily responsible for the
execution of the game; all other parts are subservient to it or
eventually loop back to it. (You'll notice how the many other
pipelines in the program return to the Executive sooner or later.)
The executive has two subsections. One is the description subsec-
tion. This routine describes the room in which the player stands,
including objects and enemies that may be nearby. The other is the
command subsection. This routine accepts input from the keyboard
and interprets the intent of the player.

Two DATA blocks are used by the description subsection, and
if your memory is clear, you should be able to tell me which ones. One
is the room description block. This holds the long and short descrip-
tions for each room, one DATA line per room. The other is the object
description block, which similarly, has one DATA line per object and
holds the long and short descriptions for objects.

There is another DATA block, one that comes into play every
time the player enters a command. That is the word fable. Essen-
tially, it consists of the basic vocabulary of the adventure program,
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together with corresponding numbers to help define the input word.
The command subsection searches through the word table every
time a word is entered. If the word is not in the table, the interpreter
cannot respond intelligently and must prompt the player for more
information.

The next level of code is the row of program units below
Executive. These are called handlers. There is one handler for each
sort of function possible in the adventure program. The command
subsection of Executive decides which handler is selected and
executed. For instance, if the player types “INVENTORY,” the
command subsection scans the word table for that word. Upon
finding it, the interpreter also reads a number in the table that
specifies which handler to execute. Some words are synonymous
and invoke the same handler. It is easy to see how the program
capabilities can be expanded with this scheme. The programmer
simply adds a new key command word to the word table and a
handler to perform the new function. The remainder of the code is
unchanged, but now the adventure program recognizes a new com-
mand. (See how structured programming reduces perspiration in
program improvement?)

The particular handlers for motion makes reference to an all-
important DATA block which was created in the last chapter. This is
the travel table, which contains the entrance and exit information for
each and every room. This motion handler and the travel table
probably get the most workout of any section of the program code
except for the command subsection of the Executive.

Two final divisions of the adventure program serve all handlers
and even the Executive. The first of these is a DATA section called
the message block. For many handlers there are special messages
that need to be displayed to indicate the status of that handler. If you
walk into a wall, a message says, “YOU CANNOT GO THAT
WAY!” If you walk off a cliff, a message says, “YOU FALL TO
YOUR DOOM . . ..” There are literally dozens of such simple
one-liners that must be kept on file for use.

The last division contains all subroutines called by the program.
There is a subroutine to locate entries in a DATA block. There is a
subroutine to analyze the travel table. There is a subroutine to
change the status of an entry in the obstacle list. Many other
often-called functions are located in subroutines, all of which reside
in a large common pool.

Now let’s stand back and look at how these many program
divisions are positioned with respect to BASIC line numbering.
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PROGRAM STRUCTURE
LINE NUMBERS PROGRAM SEGMENT
—_— —
0-99 Initialization
100-199 Main Executive
200-999 Handlers
1000-1999 Subroutines
| 2000-2999 Room Initialization Block
3000-3999 Obiject Initialization Block
4000-4999 Qbstacle |nitialization Block
5000-5999 Travel Table
6000-6999 Word Table
7000-7999 Message Block
8000-8999 Object Description Block
9000-9999 Room Description Block

Fig. 3-2. How to assign specific program segments to specific ranges of line
numbers.

Figure 3-2is the program structure listing for an adventure program.
Notice that initialization code (which is executed earliest) is first in
the program structure. It may reside anywhere among the line
numbers from 0 to 99 inclusive. (I follow the practice of using even
line numbers within a block. Basements and Beasties initialization
runs on lines 2, 4, 6, 8, and so on.)

Executive is next, then handlers, and subroutines. Notice that
more room is given to handlers and subroutines than Executive,
since those two sections are more likely to expand. (Of course, you
still never come close to using hundreds of available line numbers.)

Next, in multiples of thousands, are the DATA blocks. First are
those three blocks used only in the initialization procedure. Then
come the two tables for vocabulary and room pathways. Finally,
there are the three text blocks, with messages, room, and object
descriptions. You'll discover that these text blocks are the real
memory-hogs of the program.

GRAB THE DATA AND RUN

Of the above twelve program sections, eight are blocks of data.
That means they contain long lists of numbers or words placed on
BASIC lines separated by commas and preceded by the DATA
keyword.

44



You may not have realized it before, but getting data out of
BASIC DATA statements is rough. There are two BASIC com-
mands that relate to the process. The first is READ. Each time it is
executed, one item of DATA is obtained and placed in a desired
variable. The next READ instruction gets the next item, until all
have been read. The other command is RESTORE, which starts the
READ process over again at the very first item of the very first
DATA line in the program.

This is all very well and good up to a point. Whatif, in a DATA list
of 300 items, you want item 173? There is only one way to get it in
BASIC: do a RESTORE, then run a loop that executes READ
commands for 173 iterations until item 173 is read. Now, suppose
you want item 160. Can you read backwards to get it? Can you jump
to that item somehow? No, you must start all over with a RESTORE
and READ, READ, READ until you find it. The problem, then, with
BASIC DATA lines is that they require sequential access, that is, all
items must be read in sequence without skipping any.

You may ask, “So what? I'll just set up a simple FOR-NEXT
loop to do all of those useless READs.” Fair enough; but consider
the problems. The first is time. Your adventure program will muddle
along like a turtle if it has to read through all those DATA items
sequentially. (Remember that two-thirds of the program consists of
data.) Then, too, you'll need to calculate how many loops to do. If
you want item 17 in DATA block 4, how many loops do you need?
You have to start at the first block and read it, whether you needit or
not, thanks to the RESTORE command. To get that item, you must
add 17 to the total lengths of the other three blocks. That's work!

One final difficulty is that the data may be numeric in one block
and a string in another. If you try to do READ A repetitively, that is,
if you try to load the data into numeric variable A, the program
crashes if your loop crosses a block with strings of letters init! Again,
the reason is that you can't be choosy in BASIC. You can't skip a
block under any circumstances.

One common way out of this mess is to create a huge variable
array and read all of the DATA elements into it. Accessing individual
items then becomes easy. The problem with this typical approach is
memory space. Essentially the programmer ends up using twice as
much memory as the data actually requires! This sort of waste is
impractical. It would seem that the limitations of BASIC force us to
accept difficult data access or face scandalous memory demands.

Ah, but necessity is the mother of invention. BASIC, after all, is
only a program itself, with memory locations that control how it
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operates. What you need to dois come up with a way to skip around
through DATA blocks so you can read what you want to read.
Somewhere in RAM memory, BASIC keeps a DATA pointer run-
ning that tells the READ command where to read. With a bit of care
you can change the value of this pointer to suit your own purposes.
To do that, though, you need to understand how DATA statements
are stored in memory.

Figure 3-3 shows the format of a DATA statement as it is stored
in memory. Notice the following six elements of the format:

®A zero, which separates the DATA statement from the previous
statement.
® A next-line pointer, which, coded in two memory locations, gives
the memory address of the corresponding nextline pointer of the
next BASIC program line.
®A BASIC line number, which is the line number coded in two
memory locations.
@A 136, which is the BASIC code for the word DATA
@A list of items, each separated by a comma, which appears in
memory as a 44
®A zero, the separator between this line and the next BASIC line,
which is just element 1 again

At first some of these numbers in memory take some getting
used to, but some simple conventions apply. First, remember thatin
a 16K TRS-80 all BASIC programs occupy the RAM locations from

POINTER |NUMBER

T T T
O NEXT-LINE[BASICLINE 136 [DATAITEM] 44 DATA ITEM %élTEM Q

1 i ]

\ | L A |

BASIC LINE 3 TS THE ASCT

NUMBER CODED CODE FOR A
IN TWO BYTES SEPARATING COMMA
ADDRESS OF THE EIRST DATATTEM SOME

NEXT LINES NEXT- INDETERMINATE

LINE POINTER" NUMBER OF BYTES

13515 THE BASIC 7ERO BYTE MARKS THE
ZERO BYTE TOMARK CODE FOR THE END OF THIS LINE AND

BEGINNING OF LINE KEYWORD "DATA" THE START OF THE NEXT

Fig. 3-3. How a DATA statement with its individual items is stored in mem-
ory.
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®FORMULA 1: GIVEN H AND L,
INTEGER | = Hx 256 + L.

®FORMULA 2:
GIVEN INTEGER |,

ADDRESS BYTE H H = FIX(1/256)

X +1 (0-255) (THAT IS, 1/256 ROUNDED
DOWN TO THE NEXT
INTEGER)

ADDRESS BYTE L

X (0-255) L=1-Hx256

Fig. 3-4. Two-byte code for storing integers.

17384 to roughly 32767. (For owners of the Model I this starting
location is 17128.) The content of 17384 is a zero and corresponds
to the first element above. It indicates that a BASIC program line
follows.

Now, the next-line pointer is in a two-memory-location code, as
shown in Fig. 3-4. To calculate the address, multiply the contents of
the second memory location by 256, and add the result to the
contents of the first memory location. Using this number (which is,
of course, between 17384 and 32767), BASIC can tell where each
successive line is located in memory. The next-line pointer at the
beginning of line A gives the memory location of the pointer in
subsequent line B, and so on. The next-line pointer in the very last
line of a program is set equal to zero, as a flag to indicate the end of
program.

When BASIC is first told to read through a series of DATA
statements, it sets a data pointer to the address of the zero that
precedes the very first DATA line. Each time a READ statement is
executed, this pointer is moved forward, past the piece of data just
read, to the comma before the next piece of data. When the last piece
of data in that line is read, the pointer points to the zero that marks
the end of the line. The next READ causes the pointer to advance,
searching for another DATA line and a comma to stop. All DATA
lines are read in this manner, until no more data remains. Then, any
attempt to read causes an error message. The data pointer in
memory always points either to a commaina DATA line or to a zero
preceding a line.

The TRS-80 data pointer is kept in the two memory locations
16639 and 16640, encoded as shown in Fig. 3-4. If you multiply the
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second number by 256 and add the first, you'll get the memory
address of either a comma or a zero preceding a line. The RESTORE
command resets the pointer to 17384, the zero at the very start of
the BASIC program.

If you know the memory address of the zero that precedes a
certain DATA line, you can put that memory address, in coded form,
into the data pointer. In this case, a READ statement does not start
at the beginning of the program; the program starts with the first
item in that DATA line—no matter where it is. Imagine that! Just by
changing the data pointer you can begin reading anywhere, skipping
hundreds of items if you wish!

The problem is how do you find out what these addresses are?
You have eight blocks of DATA statements. The first three are for
initialization and are read only once, but the last five are more
important. How can the program find the beginning of them?

Here is another benefit of structured programming. You know
the line numbers of the five important blocks. As you have seen,
each BASIC line contains its own line number in encoded form. What
you need s a routine to be placed in the initialization section that does
the following:

@®Find one at a time the first lines of each DATA block, i.e., 5000,
6000, 7000, 8000 and 9000

@Store these five all-important addresses in a numeric array for
future reference.

After this phase of initialization is completed, if a part of the
program needs to access a DATA block, it finds the proper address
in the array, subtracts one to point to the zero before the DATA line,
converts it into the proper two-byte code, and places it into the data
pointer. In Basements and Beasties the array is called DA(n), for
data access. Since you are concerned with the last five DATA
blocks, DA(x) has five elements, DA(L) through DA(5), containing
the proper pointer addresses.

Figure 3-5 gives the initialization code that creates the DA(x)
array. Let's step through it command by command and see how it
determines the proper addresses.

First, some variables are preset. The variable P is used for the
memory address itself and is incremented successively to the proper
address values. P is set to 17385, the address of the next-line
pointer for the very first BASIC program line. (Remember, 17384
fiolds the zero preceding this firsi line.) The variable N is in-
cremented from 1 to 5 to step through the elements of array DA(n).
It begins at 1.
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6 P=17385:N=1:FOR1=5000T09000STEP1000

8 IFI=PEEK(P+2)+PEEK(P+3)*256 THENDA(N
)=P:N=N+1:NEXTI:GOTO10:ELSEP=PEEK(P)+
PEEK(P+1)*256: 1FP=0THENCLS:PRINT"ERRO
R":END:ELSES

10 CT(0)=1:CT(12)=RND(10)+10:CLS

Fig. 3-5. Initializationcode that loads array DA(n) with the addresses of important
DATA blocks.

A loop s then set up, to step the variable I from 5000 to 9000 in
increments of a thousand. Naturally, I corresponds to the line num-
bers for which you are searching. Remember that the line number
for each BASIC line is stored in two-byte code early in the line. In the
loop you'll need to convert each such encoded line number you
encounter into the standard decimal value; if that value equals I,
you've found the line.

The first part of line 8 does this. Since P always points to the
first byte of the next-line pointer, the line number bytes are located
at P+2and P+3. Using our conversion formula, the valuesin these
locations are reconstructed into the original line number and com-
pared to /. If the line is found, the present value of P is saved in the
array at DA(N); N is incremented so that the next line’s address is
saved in the next array element. The loop is continued and exited
upon completion. (Line 10 is the continuation of the initialization
procedure.)

Obviously the first line number this routine encounters is not
line 5000. What happens when the line number does not matchI? In
that case the BASIC code following the ELSE is executed. P is
pointing to the present next-line pointer; now it is actually set to the
value of that pointer. The contents of the bytes at P and P+ 1 are
converted into a decimal number, and the result is placed in the
variable P. Now the search can continue, since P points to the next
available BASIC line. The routine repeats line 8 over and over again
until a line number match occurs.

Let’s review a moment. Using variable P the routine advances
through BASIC line by line using the next-line pointer bytes at the
start of each line. It looks at the encoded line number in each line,
trying to find line 5000. When it finds it, the value of P is saved in
DA(1). Then the process repeats for 6000 through 9000. The array
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DA() finally contains five memory addresses with which you can
locate your five major DATA blocks.

THE ACCESS SUBROUTINE

This part of the initialization routine does half of the work of data
access for you: it provides the location of the very start of each
DATA block. Now you need a subroutine that can make use of this
information to find specific data items. Each DATA block follows the
same basic format: it consists of several DATA lines, and each
DATA line has several items. The subroutine must do the following
things:
®Find the proper DATA block using the array DA(»)
®Find the proper row in the block, and
@®Set the DATA pointer to that proper row.

With the DATA pointer set, the main program can then use the
READ command to locate the desired item in the row. (It may then
have to doa READ loop to skip a few items; but the big skip has been
done already without any time-consuming loops.)

These three requirements, then, imply the need for two vari-
ables that must be set before the subroutine can do its job: a block
number and a row number. The biock number is a number from 1 to
5, and the row number ranges from 1 to the maximum number of
DATA lines in the selected block.

Figure 3-6 provides the code for a subroutine called Access.
(Like all adventure subroutines, it resides in BASIC from lines 1000
to 1999.) The main program calls the subroutine only after setting
two variables: the variable A is set to the DATA block number, and B
is set to the row number. After Access is complete, any successive
READ commands begin at the Bth line of DATA block A.

Access begins by finding the memory address of the beginning
of DATA block A, using the numbers stored in array DAWV). The
variable P is set to this address. Remember that this address points
to the next-line pointer of the first DATA line of that block.

What if the desired row number storedin B is 1, thatis, whatifit
is the first line of the block? If so, P already points to the proper line,
and the subroutine skips on to set the DATA pointer in line 1042. If
not, you must search for the right line. The method used is similar to
that in the initialization routine. The next-line pointer is read and
placed into variable P. Each time this is done a line is skipped and P
points to the next line. This skipping process is done as aloop from 1
to B minus 1; the loop skips the unwanted lines until P holds the
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NAME : ACCESS

TYPE: SUBROUTINE
INPUT: A

DATA BLOCK NUMBER
B

DATA ROW NUMBER
OUTPUT: DATA POINTER IS SET TO
PRECEDE THAT ROW

1040 P=DA(A):I1FB=1THEN1O42ELSEFORZ=1TO
B=1:P=PEEK(P)+PEEK(P+1)*256 :NEXTZ

1042 P=P-1:POKE16640,FIX(P/256):POKE16
639,P-FIX(P/256)*256 :RETURN

Fig. 3-6. Subroutine Access.

address of the desired line. In this way the proper row is found
rapidly.

Now all that is left is to set the DATA pointer so that the READ
statement properly reads that line. You may recall that in normal
operation the DATA pointer should point to the zero that precedes a
DATA line for the READ statement to start with the first datain the
line. Well, P already points to the next-line pointer in your DATA
line, and the zero marker is just one byte earlier. If you set the
DATA pointer to P minus 1, it is set just the way Microsoft BASIC
ordinarily does it—and READ works. Using the formula for encoding
numbers into two-byte code, P is converted and stored in memory
locations 16639 and 16640, which together form the DATA pointer.
That's it.

This Access subroutine really speeds things up. For instance, if
you need to know the short description for room 7, the procedure is
simple. Room descriptions are in DATA block 5, so you set A to 5.
The room number corresponds to the row number, so set B to 7.
Then call Access (GOSUB 1040). When it is finished, execute two
READ statements; since both are on the same DATA line one reads
the long description, one the short. In this manner you have intelli-
gently accessed data, quickly and efficiently, without the need to
read every preceding piece of data.

51



Since any adventure program is at heart a data storage and
modification program, it should come as no surprise that several
other subroutines are related more directly to the kind of data
located in each DATA block. These subroutines use Access to find
what is needed. Access can thus be called (though I'll probably never
live it down) a sub-subroutine. This is the secret to any truly complex
program: simple routines to do simple tasks, other routines that use
several of the simple routines to do larger tasks, and so on upward.
The result, as you'll see, is that the Executive, the main program of
Basements and Beasties, is really rather short and sweet. Why?
Because it delegates the detail-work to layers of subroutines below
it, a sort of corporate executive routine.

Now that you have a good way of getting at data, what sub-
routines use this method? Let's look at a few.

GET THE MESSAGE

One function involving quick data access is the printing of
special messages. You have an entire data block, block 3, devoted to
messages. Life is easier if you assign these messages numbers;
when a message needs to be displayed, Access is used to find the
right one.

Enter the subroutine called Mesprt, as in message print. Figure
3-7 gives the BASIC code for this utility, which is located at line 1100
in the subroutiné section of the program. Only one piece of informa-
tion is needed for Mesprt to work: the message number from 1 to the
maximum number of messages. Mesprt takes over from there,
locating the message (using Access, of course), and printingit on the
video screen.

The program that wants a message displayed sets B equal to
the message number and calls Mesprt (GOSUB 1100). Now, in
order to use Access, remember, Mesprt must in turn provide two
pieces of information: block number and row number. The row
number is easy, since the message number is the row number—
each row in message storage holds one message. This number is
already in B, which is where Access would like it, too. The block
number is also no problem. Special messages are located in block 3.
So Mesprt sets A equal to three, just as Access expects. Mesprt
calls Access. Now all Mesprt has to do is a READ statement, and it
has the message in hand. The message is read, printed, and that’s
et

Using Mesprt really frees the adventure programmer from
keeping track of his messages. I have seen such programs that have
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NAME ¢ MESPRT

TYPE: SUBROUT INE

INPUT: B = MESSAGE NUMBER

OUTPUT: MESSAGE (S RETRIEVED AND
DISPLAYED

1100 A=3:GOSUB10LO:READA$:PRINTAS$:RETU
RN

Fig. 3-7. Subroutine Mesprt.

messages planted all over the place, some repetitively. With
Mesprt, the programmer piles his messages in one location, and
refers to them by number. This saves work, and as you know,
programmers can use all the help they can scrounge!

FOLLOWING THE PLAYER'S MOVES

The most frequently entered commands in an adventure pro-
gram are motion commands. As he progresses from room to roomin
the scenario, the player is first and foremost an explorer. The
programmer wants these commands to take little time to execute,
but a lot goes on when the player tries to move. It takes time to find
out which room he'll end up in if he moves in that particular direction.
Obviously, that block of data known as the trave] table really gets a
work-out. With Access subroutine, you can dig out the room num-
bers you need, but it is handy to have a slightly higher level sub-
routine, one designed strictly for accessing the travel table in the
most efficient manner.

So, create the subroutine in Fig. 3-8, which is dubbed Travec,
because it finds travel vectors, which are the end destinations of
certain moves. Travec resides on line 1120 in the subroutine area of
the program. Its primary purpose is to derive destination data from
the travel table, given the present room number and the desired
direction of travel.

Remember how the travel table is organized? There is one line
of resultant destinations for each room. There are eleven elements
on each line, the first ten corresponding to the ten possible directions
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NAME ¢ TRAVEC

TYPE: SUBROUT INE

INPUT: D = DIRECTION NUMBER
ATTEMPTED (1 - 11)

OUTPUT: A = DESTINATION OF ATTENMPTED

MOVE

1120 B=CT(0):A=1:GOSUB1040:FORY=1TOD:R
EADA:NEXTY:RETURN

Fig. 3-8. Subroutine Travec.

of travel, the eleventh for the default direction when an ambiguous
motion term is used (ENTER, for instance). To find the destination,
Travec must first find the DATA line corresponding to the room
where the player is. Then it must read across the line to the element
corresponding to the desired direction.

Travec uses Access to get to the data. Access asks for two
pieces of information: variable A must be the row number and
variable B must be the DATA block number. In using the travel
table, the present room number is the important thing. Row number
equals room number in the table, so Travec sets A equal to the
present room number. (The variable CT(0) contains the present
location of the player). The travel table is block 1 of the five blocks
Access covers; so Travec sets B to 1. Then, Access is used by
executing the proper GOSUB statement.

When Access is done, Travec knows that it can read the proper
line of information, but it needs to know which of 11 elements to
locate. For this purpose the program that calls Travec must supply
one more variable, D, to specify the direction of motion. Motion
numbers 1 to 8 correspond to compass-point directions; 9is up, 101is
down, and 11 is the default motion. With this number in D, Travec
knows just how far over to read. It sets up a short READ loop,
counting from 1 to ). When the loop is finished, the destination
number is stored in variable A.

There are several other subroutines in Basements and Beasties
that use Access to get at data. These are discussed in detail in later
chapters, as their necessity becomes evident.
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SQUEEZING DATA INTO INTEGERS

Organized programmers are never wasteful. They are always
searching for neater ways to store information, they are always
interested in how to compress and compact and combine data. With
your memory limitations (most of the 16K is eaten up by text), you
likewise cannot afford to pass up a good method for data compres-
sion. If you leave it up to Microsoft BASIC to decide, the creation of
numeric variables alone will swallow the last of your memory and
hand you a nice, big OM ERROR.

The last element of methodology I need to discuss in program
structuring is variable organization. Some forethought in this regard
should save a lot of trouble when you finally type RUN and hit
ENTER.

Let’s get the simple preparations out of the way first. For one
thing, the adventure programmer must exercise discipline in choice
of variable names as he writes the many parts of his program. If you
can't remember what variable you last used, don’t simply use
another. The end result is that most BASIC code is littered with
variables from A to Z, when in many cases just a couple would
suffice.

Why is this a problem? Well, every time you introduce a new
variable Microsoft BASIC proceeds to set up memory space for it.
Three bytes of memory are set aside for every variable name you
introduce, just as housekeeping, not including the bytes containing
the actual value of the variable. These allocated bytes are unused;
they simply sit there, wasted.

A good practice is to keep track, on paper, of which variables
you are using and for what functions. Whenever you need to use a
variable, force yourself to look back at that list and see if a previously
created variable will serve. The best example of this sort of organi-
zation is in FOR-NEXT loops. Conceivably, you can limit yourself to
a few specific variables, like I, J, and K, whose sole purpose is to be
used and reused inloops. Resist the urge toleap from letter to letter.

A second rule of thumb to follow has to do with the type of
variable you use. After all, not all variables are created equal. Look at
Fig. 3-9 and compare the number of bytes involved. The most
efficient of the variable types is the integer; it squeezes a number
into that two-byte code I've already been using. The precision of
integers is poor, since no fractions are allowed; that's why the
single-precision and double-precision variables were created. Ordi-
narily, though, precision variables are for mathematics-oriented
programs. Adventure programs have no real need for hair-splitting
precision.
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Ah, but if you don't tell BASIC what you want, it'll give you
more than you bargained for! Single-precision variables are the
default type. That is, unless you specify the kind of variable you
want, BASIC assumes you want single-precision. This means an
extra couple of bytes per variable—a 40 percent increase in variable
storage space! There must be a better way.

Of course, if you want to, you can specify “integer” every time
you create a variable, by appending a percent sign (%) to the variable
name. This is a nuisance, especially since BASIC provides a quicker
means, and one that won't accidentally forget to specify a variable
somewhere. It is the DEFINT statement.

By using a DEFINT statement in the initialization section of the
program, you can prespecify certain variables as integers. The form
Basements and Beasties uses is the widest form of the statement:
DEFINT A-Z. This effectively tells Level II to treat all numeric
variables that begin with a letter from A to Z (and that is all numeric
variables) as integers. Effectively you have handed BASIC a note
that says, “We’re hurting for space, please economize.”

MAKING EVERY DIGIT COUNT

The preceding remarks on variable choice are all based on
common sense and are nothing new. Now let’s get tricky. You have
already seen that an integer can hold quite a bit of information.
Integers in Microsoft BASIC range from — 32768 to +32767. The
sort of numbers you want to store are seldom larger than 10 and
almost always less than 100. It is to your advantage, then, to
squeeze as much as you can out of one integer.

That simple integer essentially has six areas of storage that are
easily accessible in BASIC. There are five digits, (which 1 number
digit 1 to digit 5 fromright to left) and one sign place (which s either
plus or minus). There are certain limitations to how we can use these
six areas. No digits can be assigned such that the final value of the
assembled integer exceeds the limits given here. Thus, digit 5 can
never equal 4; it must always be from 0 to 3. Digit 4 can be anything
from 0 to 9, as long as digit 5is less than 3; otherwise, the complete
integer may exceed 32767. The programmer in using this sort of
data compression can best eliminate such worries by assigning digit 5
to some function in which it never exceeds 2. Otherwise, he needs to
pay close heed to other digits.

M N ~la 1 ~
The sign place only conveys cne small piece of information,

since it is only in one of two states. Still, this is useful, and it doesn’t
really affect the number that follows it. Plus, as you'll see, the sign
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place is far easier to test and change than are the individual digits of
the integer.

Assuming you wish to use the places of an integer to store small
numbers, what methods can you use? There are no BASIC state-
ments that are designed to change the digits of a number directly. So
you need to write some routines of your own—two, in fact. One
subroutine should take an integer, split it up into five digits, and store
each digit value in a separate variable somewhere for easy examina-
tion and alteration. The other subroutine should take the values of
those five separate variables and reverse the process: assemble
them into a complete integer again.

AN INTEGER DIVIDED

The routine that divides a given integer into its digits is called
Analyz, and the code for it is shown in Fig. 3-10. The variables
CT(5) to CT(11) are dedicated to the integer under examination.
When the routine is finished, the first through fifth digits are storedin
variables CT(6) to CT(10), respectively. Additionally, the signof the
integer is saved in CT(11); a 1 if positive, a — 1 if negative.

A FOR-NEXT loop is established to clear the values of variables
CT(6) to CT(10). This is because digits of some previous integer
analysis may remain and confuse the results. Next, the integer must
be converted into a form in which the individual digits can be isolated.
As a numeric variable, CT(5) cannot be studied digit by digit; no
BASIC statement exists to do this. If the contents of CT(5) is
converted into a string, the various powerful string-handling state-
ments of Microsoft BASIC can be used to split the string into its
components.

The STR$ statement can perform this conversion. In this con-
version, the entire number is changed into a string—including the
sign! For the moment you simply want to isolate the five digits; a
leading sign character would just get in the way. Use the MID$
statement to exclude the first character of the new string. (This first
character is a space if the number is positive, a minus if it is
negative.)

STR$ converts CT(5) into a string. MID$ creates another
string from this one, beginning at the second character. Then, this
string is stored in memory as B$. Now a FOR-NEXT loop can be
used to analyze B$ on a character-by-character basis. The last
characier is digit 1, and the digii number increascs fromright to left.
Remember that the number may not have all five digits, depending
on its numerical value.
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NAME @ ANALYZ

TYPE: SUBROUT INE

INPUT: CT(5) = A GIVEN INTEGER

OUTPUT: CT(6) TO CT(10) = THE DIGITS
OF THAT INTEGER, AND CT(11) =

THE SIGN

1000 FORZ=6T010:CT(Z)=0:NEXTZ:B$=MID$(
STR$(CT(5)),2):FORZ=1TOLEN(B$):CT(6+LE
N(B$)-Z)=VAL(MID$(B$,Z,1)) :NEXTZ:IFCT(
5)<OTHENCT(11)=-1:RETURN:ELSECT(11)=1:
RETURN

Fig. 3-10. Subroutine Analyz.

The FOR-NEXT loop runs from 1 to the total number of
characters in the string: LEN$ determines this limiting value. The
string is evaluated from left to right, again using the MID§ state-
ment. AsZ increments, the MID$ selects each character. VAL does
the reverse of the earlier STR$ function; the selected character is
converted into a numeric value for storage in a CT(») variable.

The left-hand portion of the equation is designed to ensure that
the proper value ends up in the proper variable. For instance,
suppose that Z equals 1. The digit is the leftmost one in the string.
But, what is it, digit 5? digit 4? That all depends on the length of the
string; so the LEN statement plays a part. If the number has five
digits, the leftmost digit is placed in CT(6+ 5 —1), or CT(10), the
variable for digit 5. This is as it should be.

After the loop has loaded all digits into separate variables, the
last remaining task is to store the sign. If CT(5) is less than zero, a
- 1 is placed in CT(11); otherwise, a 1 is stored.

The result? Now if a program attributes some significance to
say, digit 3 of a stored variable, it simply calls Analyz using a
GOSUB 1000 and then examines CT(8). That makes life easier!

AN INTEGER REUNITED

Now, suppose a program used Analyz to check a digit in an
integer, and now wants to change that digit. You need a routine to

59



NAME ¢ SYNTHE

TYPE: SUBROUT INE

INPUT: CT(6) = THE DIGITS OF A GIVEN
INTEGER, AND CT(11) = THE
SIGN

OQUTPUT: CT(5) = INTEGER

1020 CT(5)=CT(10)*10000+CT(9)*1000+CT(
8)*100+CT(7)*10+CT(6):CT(5)=CT(5)*CT(1
1) :RETURN

Fig. 3-11. Subroutine Synthe.

will take all of those digits, including the changed one, and reassem-
ble them into a new integer.

This converse of Analyz is called Synthe, and it is shown in Fig.
3-11. It sets CT(5) to the value resulting from the assembly of all five
digits in CT(6) to CT(10), even if some of these are only zero. Plus,
the sign of the variable is set by the presence of 1 or — 1in CT(11).

The whole thing can be done much like Analyz, using string-
handling functions to convert the digits to string characters, then to
concatenate them, then to reconvert the new string to a numeric
value. However, the method shown in Fig. 3-11 is quicker and
simpler.

After all, each digit really represents a place value in a number.
Digit 1 is the ones column, digit 5 is tens, and so forth. So, Synthe
multiplies each digit by the proper place factor and adds the results.
Then, to set the sign, CT(11) is used as a multiplier. The final result
is stored in CT(5), and we have come full circle in integer handling.

AND NOW A STEP DOWN

Well, now we've discussed many of the fine structural points
that go into creating a tight, efficient adventure program. It’s high
time that you opened that creaky trap door and stepped down into
the gloom. How are the room descriptions displayed? What about
objects? What about attacks from hostile enemies? All of these are
part of the main executive section of the adventure program, and all
are explained in the next chapter.
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Chapter 4

Entering the Basement

§ have compared the typical adventure program to a running
grravelog, providing views of the surrounding environment as the
adventurer walks about. The program really has two states of action.
T he first state is that in which rooms, objects, and the like are
described and the program sits dormant, waiting for a command.
The second state is that in which a command is entered, a handler is
invoked and some sort of result is produced. Ordinarily, the adven-
gure program runs a regular loop between these two states.

Before the first state can be initiated, the program must
undergo some preparation. Some of this initialization was described
in the previous chapter. Before stepping down into the basement
Jet’s complete a look at the preliminaries that allow the program to
pun.

TYPE RUN AND ENTER

Figure 4-1 shows the entire initialization sequence for Base-
ments and Beasties. When you type, “RUN,” and press ENTER
these lines set up the ground rules for the execution of the main
executive.

First things first. No game program is complete without a
snappy title display. It's a shame that you cannot afford to expend
precious memory space for helpful things such as rules to the game
or playing hints. A title has to do. CHR$(23), of course, places the
display into the 32-character mode, producing large attention-
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2 CLS:PRINTCHR$(23):PRINTQLGS, "WELCOM
lE' TO":PRINTQ522,"BASEMENTS & BEASTIES

4 CLEAR500:DEFINTA=Z:DIMTX$ (4),DA(5),
RM(20),0B(16,1),BK(10),CT(12):FORI=1T
020 :READRHN(1) :NEXT:FORI=1T0O16:READOR (
1,1),0B(1,0) :NEXT:FORI=1T010:READBK( {
J:NEXT

6 P=17385:N=1:FORI=5000T09000STEP1000

8 IFI=PEEK(P+2)+PEEK(P+3)*256 THENDA(N
)=P:N=N+1:NEXT!1:GOTO10:ELSEP=PEEK(P)+
PEEK(P+1)%256: 1 FP=0THENCLS: PRINT"ERRO
R":END:ELSES

10 CT(0)=1:CT(12)=RND(10)+10:CLS

Fig. 4-1. Initialization code.

getting letters. The PRINT@statements place the title lines just
where you want them.

(A note of caution is apropos here for users unfamiliar with the
32-character display mode. The width of the letters is doubled, and
every other byte in display memory is skipped. Thus, the PRINT@
statement must be used to address even-numbered screen locations
only! For demonstration purposes try to use PRINT@with an odd
number; the word is stored in memory, but the screen refuses to
display it.)

Next, youneed to attend to a number of housekeeping functions
within the computer. Some of these have to do with the allocation of
memory. Figure 4-1 shows how BASIC line 4 handles these needs.

For instance, you need to tell the TRS-80 how much memory
space to set aside for the purpose of constructing and saving strings.
You may know that, upon power reset, BASIC goes right ahead and
sets aside 50 bytes of space for strings; this space is located in high
memory near the memory-size border. You need more than that,
though. The printed descriptions for each room have a maximum
length of 240 characters, and even the short descriptions used for
the objects tend to be at least a line long (64 characters). So line 4
contains the CLEAR 500 statement. This allocates a good 500 bytes
of working space for the few string variables used in Basements and
Beasties. CLEAR 500 aiso, of course, resets all variables, a good
thing to do as an early part of program initialization.

In the previous chapter I mentioned the need to define numeric
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variables as integers, in the noble interest of saving bytes. DEFINT
A-Z alerts the TRS-80 that every numeric variable beginning with a
letter from A toZ (in effect, all such variables) should also be treated
as an integer.

Also, any variables that you have chosen to organize into an
array must be properly sized or “dimensioned.” In the TRS-80, all
arrays begin with eleven levels of value in any direction (zero
through ten) unless the program specifically indicates otherwise.
Thus, if you refer in some line to A(3), BASIC sets up the array A(),
where » may range from zero through ten. If you never intend to use
more than a few of the elements of that array, all of the others
represent a memory waste. On the other hand, if you try to refer to
something like A(22), the result is a dimension error; you have
exceeded the predetermined size of the array.

To save space in the case of small arrays and to make larger
arrays possible, the DIM statement is used. Notice that in Fig. 4-1
the single statement DIM is used across five different arrays. In
order, the text-string array TX() is sized, then the data-access
array DA(n), then the room status array RM(z), then the object
status array OB(n, #), then the obstacle list array BK(10).

The remainder of line 4 performs the initialization of three of
these important statuses. Perhaps you recall that the first three data
blocks in the program are for the setting up room, object, and
obstacle states. Figure 4-2 shows how each of the relevant arrays

RM(X) )
, YY) 2000
1]2]3 45£ 16{17[18]19]20 DATA . ..
< < -~
OB(X.Y)

YY) 3000
1|1.12]2]3, 15.,15,16,/16, DATA
1{ol1]|o]1 1]lol1o0

“TTBK(X < 4

&) 4000

112|3|a| 5|6 |7]8]|9]0 DATA . ..

Fig. 4-2. How the major arrays are initialized from the first three DATA
blocks.

63



are loaded from these three blocks. Since the data-read pointer is
reset to the very beginning of the BASIC program buffer, upon
power reset the first READ statement accesses the first DATA
statement, and subsequent READs continue through the blocks that
follow. After these initial setups, however, all data access is done
using the special methods outlined in the previous chapters: the
data-read pointer is controlled by POKE statements within the
program, not primarily by BASIC.

The initialization performed in lines 6 and 8 have already been
described in the previous chapter. When these two lines are exe-
cuted, the data-access array DA(#) contains the memory addresses
of the beginning of each of five important data blocks. These ad-
dresses are then used for quick access to the selected data block,
skipping previous blocks.

Line 10 is the final bit of preparation you need to begin the
game. Array element CT(0) contains the present room location of
the intrepid adventurer. The player begins in room 1, the home
base; so CT(0) is set to 1. Next, the counter that controls the
appearance of the tenacious creature, called Orc, must be initialized.
CT(12) is set to some random value of from 10 to 20, using the RND
function. At last the screen is cleared, removing the game title and
preparing the display for the room descriptions coming along.

DESCRIPTION

Lines 100 to 199, as you may recall, contain Executive, that
portion of the code that really gets a workout; most other sections
loop back to Executive. Figure 4-3 lists Executive in its entirety.
The first two lines, 100 and 102, constitute the description subsec-
tion of Executive. They paint the picture of the adventurer’s im-
mediate surroundings. Line 104 jumps to a section of code that
handles the activity of the tenacious Orc. The remainder of the lines,
105 to 110, are the command subsection. These lines receive input
from the keyboard, parse the command, and direct program flow to
the appropriate handler. Let's first take a look at the description
subsection.

There are three descriptive tasks for this subsection to ac-
complish:
®Describe the room itself,

®Describe any objects in the room
&Describe a tenacious enemy in the room

Consider first the description of the room itself. There are, of
course, two ways to describe a room: the long description and the
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100 CT(5)=RM(CT(0)):GOSUB1000:C=CT(6):
GOSUB1160:GOSUB1180: I FB=0ANDC=0THENCT(
6)=1:G0OSUB1020:RM(CT(0))=CT(5):ELSEIFB
=1THENN=RND(100): IFNC20THENB=5:G0OSUB11
00:GOTO0580

102 GosuBl1iuo

104 GOTO1l1l2

105 INPUTA$

106 GOSUB1060:A$=TX$(2):GOSUB1080

108 CT(5)=N:GOSUB1000:IFCT(10)=00RN=0T
HENB=7:GOSUB1100:G0T0104

110 ONCT(6)+CT(7)+*10G0T0200,220,240,26
0,280,3060,320,340,360,380,400,420,460,
480,500,520,540,560,580,600,620,640,66
0,680,700

Fig. 4-3. The Executive, divided into the description and command subsec-
tions.

short description. Which descriptive paragraph/phrase should be
displayed? The rule is, if this is the first visit to the room, display the
long paragraph. On subsequent visits, show the short phrase de-
scription. The first piece of information to check, then, is whether
this room has been visited before or not.

The room status array, RM(»), contains this information. If the
first digit of the integer stored in RM(x) is a zero, then the room has
never been visited; if it is a one, then it has been visited one or more
times. You need to check that digit; so the Analyz subroutine,
located at line 1000, comes in handy. Analyz divides any integer
temporarily placed in variable CT(5) into its five digits, which are
stored in variables CT(6) through CT(10). After using Analyz (CT(6)
contains the first digit, which would tell you which description to use.

Line 100 begins by setting CT(5) equal to the room status
integer for the present room and then calling Analyz. [Note that
CT(0) holds the number of the present room; thus, RM(CT(0)) gives
the desired status integer. ] When Analyz is finished, CT(6) is either
a zero or a one, depending on whether the room has been visited or
not.

This proves to be a convenient arrangement. The subroutine
that actually prints the room description (its name is Viewrm) prints
either the long or short form, depending on the following criterion: if
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the variable C is a zero the long form is used, otherwise the short
phrase is used.

CT(6) already meets this requirement (not by chance, I assure
you). All you need to do is set C equal to CT(6) and call Viewrm; the
proper description will be displayed on the screen.

It’s clear that you'll need to take a good look at how the room is
described, and so we must take a detour from our analysis of
Executive. Figure 4-4 gives the code for Viewrm and one more
helpful routine called Darkck. Don’t worry, I'll explain how it all
hangs together.

Before Viewrm can describe the room, regardless of long or
short description, there is one final consideration—is it too dark to
see in there? Remember that in Basements and Beasties (and in a
number of similar adventure programs) much of the action takes
place beneath the earth’s surface, in gloomy caves. Standard equip-
ment in such cases is a torch or lantern to see by (that is object 9 in
your program). Thus, there are two questions to answer: Is the
adventurer in a dark room? Does the adventurer have the torch?

The subroutine Darkck (from DARK Check) evaluates these
two questions, which is why Viewrm calls Darkck before it does
anything else. Look at line 1180. Using the following logic Darkck
sets the variable B to a one if the player cannot see his surroundings.
If the player doesn’t have the torch, and if he’s not above ground,
thenit’s too dark to see. The array element OB(9, 1) tells where the
torchis. If the adventurer is carrying it, OB(9, 1) should equal 21, the
location number for all things being carried. Then, the only two
rooms above the ground and not needing extra light are rooms 1 and
2. If CT(0), the present player location, does not equal 1 or 2, atorch
is needed. Darkck uses these comparisons and sets B accordingly.

Getting back to Viewrm, Darkck s called. If B equals 1itis too
dark to describe the room. In such a case the message “IT IS TOO
DARK ... YOU MAY FALL INTO A PIT!” is displayed in lieu of a
description. This message is message 39; all that is needed is to set
B to this message number and call Mesprt (message-print) at line
1100. The message is displayed and Viewrm returns. (Check the
previous chapter on the workings of Mesprt for review.)

If the adventurer can see, though, Viewrm continues on. The
long and short descriptions of the rooms are kept in the room
description block of data. Using Access (lines 1040 through 1042),
the specific long paragraph and shorter phrase descriptions can be
read from the DATA line and stored in two separate string variables.
The long version is stored in TX$(0), the shorter in TX$(1).
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NAME ¢ VIEWRM
TYPE: SUBROUT INE
INPUT: C

0 FOR LONG DESCRIPTION
C

1 FOR SHORT DESCRIPTION

OUTPUT: ROOM S DESCRIBED (F THERE IS
ENOUGH LIGHT; IF NOT, A
WARNING MESSAGE S DISPLAYED

1160 GOSUB1180:1FB=1THENB=39:GOSUB1100
tRETURN:ELSEA=5:B=CT(0):GOSUB1040:READ
TX$(0),TX$(1): tFC=0THENPRINTTX$(0):RET
URN:ELSEPRINTTX$(1):RETURN

NAME : DARKCK

TYPE: SUBROUTINE

INPUT: NONE

QUTPUT: B =1 IF IT IS TOO DARK TO
SEE

B 0 OTHERWISE

1180 (FOB(9,1)<>21ANDCT(0)<>1ANDCT(0)<
>2THENB=1ELSEB=0
1182 RETURN

Fig. 4-4. Subroutines Viewrm and Darkck.

Remember that Access requires two main pieces of informa-
tion: the block number in variable A and the entry number in variable
B. The number for the room description block is 5, and the entry
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number is equal to the present room number in CT(0). So Viewrm
sets these two variables and calls Access. When Access is done, the
data pointer in BASIC is at the beginning of the data line that holds
the two descriptions. They are read into TX$(0) and TX$(1) with
ease.

The final consideration is which description to use. Ah, way
back in Executive we set variable C to select the right description!
Viewrm just checks the value of C and prints out either TX$(0) or
TX$(1). That’s simple!

Reviewing what we've just seen, Executive needs to describe
the room. It calls Viewrm, which may print either a long description
or a short one—or it may choose to print no description if the room is
too dark.

One more thing needs attention regarding the room. Now that
the room has been visited, you need to change the room status array
element to reflect the fact. The digits of that element are still kept in
variables CT(6) through CT(10). You can simply change CT(6) to 1.
Then a call to the subroutine Synthe reassembles the digits and put
them into a complete integer in CT(5). (Synthe, described in the
previous chapter, is the inverse of Analyz.)

It would not be good to make this change if the room was dark
and no description had been printed. Why? Because if the adventurer
returns later, torch in hand, he just gets a short description; he was
there before, even though he couldn’t see. That would be grossly
unfair (and adventurers need all the help they can get). So, before
you change the room status to visited, ask, “Did he see anything?”
That means another call to Darkck, which sets B accordingly.

IF B is a zero, and C (which a long time ago was set to the status
of the room) is a zero, change the room to visited. In that case, set
CT(6) to a 1 and call Synthe (line 1020). CT(5) is the new room
status, and you can place this into RM(CT(()).

What if the room is dark? In that case, play a little game on the
poor adventurer. Remember the message “IT IS PITCH DARK IN
HERE... YOU MAY FALL INTO A PIT”? Well, provide him with
that chance. Using the BASIC RND function to provide a random
number from 0 to 100, give the player a 20 percent chance of falling
into a pit and being killed by the fall. The variable NV is set to arandom
number; if N isless than 20, his doom s sealed. Message 5is printed
using Mesprt (“YOU FALL TO YOUR DOOM . . .”) and the
program jumps out to a handler that takes care of dead adventurers.
This may seem cruel and unfalr, but it is merely a means to Keep
smart-alecky players from attempting to travel through the entire
scenario without the aid of a torch!
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KEEPING TRACK OF OBJECTS

Now that the room has been described, the objects come next.
Note that this includes passive creatures that do not attack unless
irritated by the adventurer. Executive relies on yet another sub-
routine for this requirement. Line 102 of Executive calls it.

Figure 4-5 shows line 1140, which is the subroutine Listob (as in
list-objects). Its task is to search through the entire object status
array, find those objects that are located in the present room, and
print their description.

By now you are probably not surprised by the first few state-
ments. It just makes sense once again that if it is too dark to see, no
object descriptions can be printed! Here we go again . . . another call
to Darkck, and a check to see how variable B has been set. Listob
returns wordlessly if the environment is too dark.

In the normal case, though, the objects are seen and Listob
prepares to describe them. The object descriptions are kept in data
block number 4, and Access is used. Variable A is set to 4 in
expectation of repeated calls to Access. The other variable that
Access expects to see, variable B, is set by the loop that follows.

In the object status array, the elements OB(x, 1) yield the room
number where the object is located. Which objects are in the present
room? AFOR-NEXT loop is set up for 16 iterations, since there are

NAME ¢ LISTOB

TYPE: SUBROUT INE

INPUT: HNONE

OUTPUT: ALL OBJECTS IN THE ROOM ARE
DESCRIBED F THERE IS
ENOUGH LIGHT TO SEE BY

1140 GOSUB1180:IFB=1THENRETURN:ELSEA=4
¢FORB=1TO16:1FCT(0)<>0B(B,1)THENNEXTB:
RETURN:ELSEGOSUB104LO :READTX$(4) : PRINTT
X$(4):NEXTB:RETURN

Fig. 4-5. Subroutine Listob.
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16 objects. If an object is not in the room indicated by CT(0), thenitis
skipped. Otherwise, itis a nearby object and needs to be described.

On such objects, a call is made to access to get the object
description. The variable A has already been set to locate the proper
data block. Access now needs the variable B to tell it which entry in
the block to point to.

Fortunately, we thought to use B in the FOR-NEXT Iloop.
Thus, B already equals the desired object number, and access has
everything it needs to seek the descriptive sentence to be printed.
When Access is done, Listobis ready to access the description with a
standard BASIC READ statement. The sentence is stored in TX$(4)
and is immediately printed. The remainder of line 1140 completes
the loop, checking the other objects.

So far the descriptive subsection of Executive has described the
room itself and listed any objects sitting around. This also covers the
dormant creatures. Now, what about the real fiend of the scenario,
the tenacious creature Orc?

ROAMING MONSTERS

The final descriptive task of the Executive is to alert the ad-
venturer to the existence and attacks of the tenacious creature Orc.
This creature is unique in that it does not simply pose an obstacle to
getting through a given door. Nor does it sit there, refusing to bite
until threatened. The tenacious creature Orc as its name implies,
never gives up. Once it finds you, it will follow you from room to
room, until either you or it is laid to rest. It attacks randomly and just
as randomly may succeed in killing the stalwart player. The BASIC
code controlling this creature’s activity is located in Executive.

Figure 4-6 shows the routine for the tenacious creature, Orc.
Three variables are used to control the appearance and activity of the
foul beast. Array variable OB(0,1), an unused element in the ohject
status array, is used to store the room location of the Orc. Variable
0OB(0,0), onthe other hand, is a flag. Ifit equals zero, the Orchas not
yet stumbled upon the adventurer. If it is a one, the Orc and the
player are in the same room. Finally, variable CT(12) is a counter
used to control how often the hero runs into the Orc.

How does the Orc find the player? There are many ways this
can be done. For instance, I had one version in which a random
number generator bounced the Orc from room to room, until he
landed on the plaver. The prohlem with this approach, and several
others like it, is that it was too random. The Orc might never appear
in some rounds; in others, he’'d keep popping in every other move!

70



™

112 (FOB(0,0)=0ANDCT(0)>2THENCT(12)=CT
(12)-1:(FCT(12)<=0THENCT(12)=RND(10)+1
0:08(0,1)=CT(0):0B(0,0)=1:GOTO116:ELSE
105

114 (FCT(0)<3THENOB(0,0)=0:GOTO105:ELS
E0B(0,1)=CT(0)

116 B=42:GOSUB1100:B=RND(100):IFB>75TH
EN10SELSEB=43:GOSUB1100:B=RND(100):1FB
>60THENB=44 :GOSUB1100:GOTO580:ELSEL05

/ R
gi @ 4-6. Routine governing the tenacious creature Orec.

Clearly, he must have limits placed on his random wanderings.

In this version the variable CT(12) is a counter that is set to
some random number between 10 and 20. This counter is dec-
remented with every move made by the player. When it runs out,
th e player meets the Orc! You may choose to change the frequency
of meeting, but the concept itself works well.

Let’s follow the routine. The first task is to decrement that
counter, CT(12). The counter should be decremented under two
conditions only. First, the Orc and player should not yet be together,
gince that is what the counter is preparing for. Second, the player
should not be in room 1 or 2, since these are above-ground rooms
and Orcs hate the outdoors! OB(0,0) is the flag that satisfies the first
qualiﬁcation, CT(0) the other. If the player is above ground, or if the
Orc is with him, the rest of that line is skipped. Otherwise, CT(12) is
jessened by one.

Now, what if CT(12) finally runs down to zero? Then the Orc
appears! First, CT(12) is reset to some level, to control the next Orc

hat comes along. Second, the Orc is moved right into the player’s
room (0B(0,1), the Orc’s location, is set equal to CT(0), the hero’s
jocation). Then, the Orc chooses whether or not to attack inline 116.
1f CT(12) has not yet run out, the routine is finished for the time
peing and returns to the input portion of the program.

If the player is above ground, or if the Orcis with him, line 114 is
executed. In the first case, the Orc leaves the player alone if the
player moves above ground. Then, OB(0,0) is set to zero, indicating
that the Orcis nolonger at the hero’s throat. (This starts the counter
CT(12) back into its downcount for a future meeting.) In the second
case the Orc follows the player; so the Orc’s location number in
0B(0,1) is equated with the player’s in CT(0). Line 116 handles
possible attacks by the Orc. In line 116 three possibilities are gener-
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ated: the Orc does not attack, the Orc attacks but does not kill, the
Orc attacks and kills the adventurer.

Before these three options are juggled, message 42 is dis-
played, which warns, “THERE IS AN ANGRY ORC NEARBY!” A
random number from 0 to 100 is generated. If this number is greater
than 75, the first option above comes true: the Orc does not attack,
and the program continues on.

In the 75 percent chance that the Orc does attack, message 43
exclaims, “HE SWINGS OUT AT YOU WITH A BLACK SCI-
MITAR!” Then the fate of the duel is determined with a second
random number. A value of greater than 60 means death for our
hero. In that case, message 44 laments, “YOU ARE SLASHED IN
PIECES.” Then program control skips to a routine that provides
handy resurrection and re-entry into the scenario, Otherwise, the
program continues on to the input segment.

(I hardly need to tell creative programmers who read this
volume that these probabilities are arbitrary. You can demonstrate
your capacity either for compassion or cruelty depending on the
numbers you choose for the comparisons in line 116!)

With that done, Executive fills a portion of the screen with
descriptive material. It now awaits input from the player, who
doubtlessly would like to swing his own sword at the Orc before the
percentages backfire. The command subsection of Executive now
comes into play.

AT YOUR COMMAND

Lines 105 to 110 constitute the command subsection. Through
this section, the one or two word phrases entered by the player are
broken down and analyzed, and the desired action is performed.

Now, there are far more elegant adventure programs in terms
of command parsing (interpretation). Some allow prepositional
phrases, adverbs, and so on. Those touches are fine—if you have
both the memory and the program speed to handle alarge vocabulary
and a number of options quickly. You're limited to BASIC and 16K.
Don’t quail: two-word commands are enough, as long as you choose
your vocabulary well,

Figure 4-7 shows the grammar we chose. Every input from the
keyboard contains one or two words, either a verb or noun by itself
(NORTH or OPEN), or a verb with a noun (TAKE DIAMOND or
GO WEST).

It is the place of word 1 to specify the type of task being
requested, so that an appropriate routine or handler can be invoked.
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1 S VNI
WORD 1 SPACE
N G NN

NN
\/"V—\/\-—*"——v—\__/
SINGLE COMMAND OPTIONAL SECOND
WORD. A SELF~— WORD WITH SPACE
EXPLANATORY AS SEPARATOR—
VERB OR NOUN USUALLY A NOUN
EX; “WAIT," "EAST" EX: "DROP AXE”

Fig. 4-7. Simplified grammar of Basements and Beasties.

For instance, if the player types in “SCORE,” a handler is called that
displays the present score and then returns to Executive.

Word 2, on the other hand, specifies the parameters relating to
the task implied by the first word. Suppose you typed “TAKE.”
What does the program do? It invokes the handler called Take, but
what object in the room should the adventurer take? The second
word removes the ambiguity by supplying additional data.

In either case the words of the command must be recognized to
be useful. This involves that dreaded trick of the programmers’
trade, the table search. A word table must be maintained in memory
so that each input word can be compared to the table elements for
identification.

The word table for Basements and Beasties comprises data
block 2. It is not enough, of course, simply to have a long list of
words; each word should have some data associated with it, to
instruct the command interpreter on how to define it. Each word in
the table is paired with an integer known as the word ID number.
Each of the digits of this integer contains information to define its
accompanying word.

Figure 4-8 gives the breakdown of the word ID number. There
are three fields of information that aid in identifying a given word.
The first is digit 5; if it is a one, the word is a valid first word term and
should be interpreted as such. Any word in the table with an ID
number of from 1000 to 19999 invokes a handler, but which han-
dler? The answer is in the field consisting of digits 1 and 2. These
specify one of 99 possible handlers that this word can imply. If you
enter the word SCORE, it is found in the word table with an ID
number of 10012. The command interpreter then knows to invoke
handler 12.
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WORD ID NUMBER
. | worp ! "
= | TvpE DEL|NEIEATOH IDENW;IFIEH
0IF EXTRA HANDLER No.
A NOUN INFORMATION (IF A VERB)
11F IF HANDLER OR
A VERB REQUIRES IT OBJECT No.
(IF A NOUN)

Fig. 4-8. Digit assignment for the word 1D number.

A third field is added, made up of digits 3 and 4. In some special
handlers extra information can be carried through this field. The
simplest example of this usage is a handler called Liners. This
handler simply gives a one-line answer to a one-word input. If the
player types “WAIT,” he gets the message, “TIME PASSES.”
Many different words can invoke Liners, but which message should
Liners print? To simplify matters the third field in the ID number
contains the message number that Liners use for that word. In the
word table the word WAIT is paired with the integer 13809. This
tells the interpreter to invoke handler 9 (which is Liners). It tells
Liners to print message 38 (which is, “TIME PASSES”). There are
other handlers that use this third field, too, but you get the idea.

Let’s get back to the first field. If it's a one, you have a valid first
word; if it’s a zero, it’s a valid second word. The handler needs some
additional information, such as the name of an object to TAKE or a
creature to KILL. In the case of a second word identification, the
second field (first and second digits) represent the ohject number to
which the word refers. (The third field is not used.) Essentially,
object names in the word table are simply paired with their numbers,
since all other digits in the ID number are zeroes.

Note, too, that many different words stored in the word table
refer to the same object; they all must be paired with identical ID
numbers. That is why the words JEWEL and CROWN both are
paired with ID numbers of 1, because they both refer to the first
object, which is the jeweled crown.

Now it is time to consider the actual code that makes use of the
word table and the word ID numbers, and see how the handlers are
invoked. Use Fig. 4-3 as a reference to the discussion.
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The first step is simple—getting the input string. The BASIC
statement INPUT A$ produces a question-mark prompt on the
TRS-80 screen and loops until the player types in a series of charac-
ters terminated by ENTER. The input string is stored in the variable
AS.

Now, think for a moment: where is the first or second word in
that variable A$? To the TRS-80 A$ is just a series of characters!
There must be a process to break A$ into one or two input words.
This process is embodied in the subroutine called Getcom. It resides
at line 1060. Figure 4-9 shows its contents.

Givena string in A$, the purpose of Getcom is to isolate the one
or two words init and place these in the variables TX$(2) and TX$(3)
as the first and second words, respectively. If there is only one word
in A$, it is placed in TX$(2) as the first word, and TX$(3) is nulled to
indicate no second word.

The key to this isolation process is the space character. If the
input string stored in A$ contains a space, it is assumed that this is
the separator between the first and second words. If there is no
space, A$ is considered to be one entire first word. Getcom must
systematically search through A$, looking for a space.

Fortunately, Microsoft BASIC contains some very helpful
string manipulation functions. The LEN(X$) function can determine

NAME: GETCOM

TYPE: SUBROUTINE
INPUT: A$ = COMMAND INPUT LINE

Li}

OUTPUT: TX$(2) WORD 1

TX$(3)

WORD 2, I[F ANY

1060 FORI=1TOLEN(A$):IFMID$(AS,1,1)O"

"THENNEXT1:TX$(3)="":TX$(2)=A$:RETURN
tELSETX$(3)=MID$(A$, 1+1):TX$(2)=LEFTS$(
A$,1-1):RETURN

Fig. 4-9. Subroutine Getcom.
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the length of the input string, so you'll know how far to search. The
MID$(X$,y,z) function can extract specific characters out of the
string for your examination.

Here's how it’s done. A loop is set up to gsearch the string from
the first to the last character. Each character in the string is com-
pared to a space. The expression MID(A$,1,1) selects one character
from A$, specifically the one that is I characters from the beginning
of the string. As I changes value, each and every character is
checked to see ifit is a space. Each time a character is found not tobe
a space, the loop continues.

If the loop runs out without having found a space, TX$(3) is set
to a null length, meaning that no second word exists in the string. A$
is interpreted as being only one word, and it is stored in TX$(2) as
first word. Getcom is finished and returns.

If a space is found, however, Getcom makes the assumption
that all of the characters to the left of the space are word 1; and all of
the characters to the right of the space are word 2. First, word 2 is
stored in TX$(3); the expression MID$(A$,I+1) extracts all charac-
ters from position + 1to the end of the input string. (Note that this
excludes the space itself.) Then, a word 1; is stored in TX$(2). The
expression LEFT$(A$ I—1) extracts all characters from the begin-
ning of the input string up to and including position/ — 1. (Again, the
space is excluded.) Getcom's task is finished; so it returns.

You may be asking, “What if there are more than two words in
the input string?” Well, think it through. Getcom makes the division
at the very first space it can find. It doesn't continue to see if there
are more spaces or words. Therefore, if you type in “KILL SPIDER
QUICKLY,” word 1is “KILL” and word 2 is “SPIDER QUICKLY.”
You'll see in a moment that the useless third word is safely ignored
when the interpreter figures out what creature is intended by the
second word.

Back to the command interpreter itself. After it calls Getcomto
divide the input string, it has a first word with which to work. The
next thing to dois to find that word in the word table, get the word 1D
number, isolate the handler number, andinvoke the handler. Simple!

The thing that makes it simple is yet another subroutine; this
one is called Idword; Figure 4-10 gives the code for it. The in-
terpreter sets A$ equal to the first word and calls Idword. Idword
takes the word in A$ and locates the word in the word table. Upon
finding the word, it sets the variable N equal to the word ID number
paired with the word.
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NAME: I DWORD

TYPE: SUBROUT INE

INPUT: A$ = WORD

OUTPUT: N = WORD D NUMBER IF FOUND
IN WORD TABLE
N = 0 OTHERWISE

1080 (FLEN(A$)>STHENA$=LEFT$(AS$,5)
1082 A=2:B=1:GOSUB1040

1084 READBS$,N:IFB$=","ORB$=A$THENRETUR
NELSE1084

Fig. 4-10. Subroutine Idword.

The first step in the process is in line 1080. Essentially, all this
line does is limit the word in A$ to a maximum length of five
characters. You may have wondered, if you looked at the word table,
why all the object names and other terms are all only five letterslong.
This is strictly to save space. It turns out that five is an optimum
length for word recognition in adventure programs; certainly fewer
than four letters causes some ambiguities and erroneous identifica-
tions. This also allows for a bit of input abbreviation. The player can
type “INVEN,"” and the program knows he is asking for aninventory.
Fumble-fingered typists lost in the heat of adventure play always
appreciate a break!

Next, Idword gets ready to begin its long reading through the
word table. The word table is data block 2, and Idword wants to
begin searching at the first entry. It sets variables A and B accord-
ingly and calls the ever-ready subroutine Access to position the
BASIC DATA pointer at the head of the table. Subsequent READ
statements access the elements of the word table.

The search performed by Idword is a good, old-fashioned se-
quential search: the word table is not alphabetically sorted. As it
turns out, the time delay involved in finding the word is not too long;
so I never wrote a fancy binary search routine. (Chapter 10 of this
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this book, however, does provide a way to use an alphabetized word
table to speed up the search.)

Sticking with the sequential search, Idword reads data in pairs,

grabbing a word into variable B$ and placing its corresponding ID
number in variable N. Then it performs a compare operation. Obvi-
ously, if B$ equals the input word A$, the job is finished and Idword
returns with the ID number still in N. But another comparison is
performed, to see if the character “.” has been read from the table.
The last elements in the word table always are a period paired with
anID number of zero. Thus, if Idword reads a period inits search, it
knows it has reached the end of the table without finding the word it
is after. Just the same, it takes no more action; it returns. The
variable N, though, now contains a zero, which is a reserved ID
number indicating a search failure. If the program that called Idword
(the interpreter) gets back an N with zero value, it knows that the
input word is not in its vocabulary, and it can respond accordingly.

Once again, back to the interpreter. Now that it has the variable
N, the interpreter can begin to break down and make use of N.

You naturally remember the subroutine Analyz, which isolates
the digits of a given integer. The interpreter places the value of N
into variable CT(5) and calls Analyz. When that routine is completed,
the five digits of the ID word reside in CT(6) to CT(10).

Now the interpreter needs to make a few decisions. What if the
player entered a single word that is not really a valid first word, like
“SPIDER?” Or what if the player typed two words, but the first is
not a valid first word, such as, the phrase “SPIDER KILL?” The
interpreter rejects both of these entries by checking the value of the
fifth digit in the ID word. That digit must be a 1 to be a valid first
word. If it is not, the interpreter plays dumb: it sets variable B to
message 7 and calls Mesprt. The result is the displayed question,
“WHAT DID YOU SAY?” The program-flow loops back to the
INPUT A$ statement, allowing a new command input from the
player.

At the same time the interpreter checks the value of N to see if
the input word was recognized from the word table at all. If N equals
zero, once again the interpreter professes ignorance and prompts
the player for another command with the question in message 7,
looping back to line 104 and INPUT AS$.

You're skeptical; I can hear you again! You are asking why the
interpreter is so dumb. After all, it should be smart enough to ignore
word order in that input example, “SPIDER KILL.” It is obvious to
dumb humans what that phrase was intended to mean: why not to a
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dumb computer? Again, it's a case of personal preference. The
command subsection of Executive can be refined to become quite
literate and comprehensive, if the programmer is willing to sacrifice
some memory space and speed.

If the program gets through these few input constraints, it
decides that it is ready to invoke a handler; the first and second digits
of the analyzed ID word, now in CT(6) and CT(7), are the handler
number. To reconstruct that number from the two separated digits
it’s necessary to multiply the second digit by ten (since it was the
tens column of the original ID number) and add it to first digit. The
result is a handler number from 1 to 99.

Many thanks to the man who first suggested that BASIC should
include the calculated GOTO. This function, in the form ON X
GOTO A,B,C, . . . Z, makes the control of program flow an easy
thing. The ON . .. GOTO statement is followed by a list of BASIC
line numbers; a GOTO occurs to the line in the list position specified
by the variable in the statement. If the variable is the handler
number, ON. . . GOTO matches that number with its location in the
program and jumps to it. (Be warned, if the variable is to equal zero,
no GOTO occurs and the next statement is executed. Also, if the
variable exceeds the number of line numbers in the list, an error
occurs.)

For a period of time, the program is under the control of one of
the handlers. Depending on the function of the handler, the flow
eventually returns to Executive at one of two points of entry. The
first is the description subsection. After the player makes a move in
the scenario, he needs to see the room into which he has moved. The
descriptive portion of Executive is the logical return point. The other
entry point is the command subsection. Some commands do not
need a second description of the immediate environment; commands
like SCORE, INVENTORY, or TAKE. After these handlers do their
task, they simply return for another command.

This, then, forms the core of the adventure program. Hereis a
bit of review on the procedure of the program from the moment you
type RUN and ENTER.

1. Initialization

® Display the game title.

®Set up variables.

@ Load object status array and obstacle table.

®Create data access array.

@Move player to Room 1, clear the screen, and reset the tenacious
creature.
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2. Executive
®Description Subsection
Describe the Room.
Describe the Objects nearby.
Describe the “tenacious” creature if nearby.
Handle any attack from the “tenacious” creature.
®Command Subsection
Input a command string.
Evaluate it as one or two words.
Look up the first word in the Word Table.
If possible, invoke a handler from that word.

All of the preceding has simply set the stage for an effective
game of Basements and Beasties. Now it's time to find out how each
of the handlers actually sustain the play. The logical starting-place is
to study the handlers that move the adventurer around. That is the
topic of the next chapter.
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Chapter 5

Traveling in the Scenario

Once the player has entered Basements and Beasties, he is placedin
a room and told what it all looks like. The initiative is left with the
player. What should he do? The command interpreter awaits input,
and a score of handlers stand ready to do the player’s bidding.

The first command an adventurer usually enters is a motion
instruction. (Obviously, he wants to get a broader picture of his
surroundings.) When he does, a handful of handlers come into play.

When traveling about in an adventure scenario, there are
primarily three sorts of travel commands you can input. These are
explicit travel commands, implicit travel commands, and magic
travel commands.

Explicit travel commands give complete information on the
direction of travel. As coveredin Chapter 2, a player cantravelin one
of ten directions, eight compass points plus up and down. An explicit
travel command tells the command interpreter the exact path de-
sired. The player can type, “GONORTH,” or simply, “NORTH,” or
even “N.” In all of these cases, the interpreter knows what is
expected and can proceed to move the player along that path (as-
suming there are no obstacles).

Implicit travel commands, on the other hand, indicate only that
motion is desired; they do not specify the direction. The interpreter
must somehow perceive the direction that is intended based on the
scenario. For instance, the player can be standing near a ledge. If he
types, “JUMP,” he has not specified a direction-—but the interpreter
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assumes the direction is down. Similarily, if there is a room with only
one door, to the north, the interpreter understands the command
“EXIT” to mean the same as “GO NORTH"” in this context. Implicit
travel commands require more intelligence from the interpreting
handler.

Magic travel commands are a stock item in adventure programs
and usually come in handy in dangerous situations. These commands
usually depend on a magic word or words that are immediately
understood by the handler and produce a preprogrammed motion
response. Magic travelis typically teleportation: rather than moving
one step in a compass direction, the player is suddenly depositedina
different room, sometimes quite far from the point of origin. There
are other factors involved (such as how the destination is deter-
mined), but I'll cover those in due time.

The key to these three modes of travel lies in the handlers
associated with them. Therefore, let’s examine these routines case
by case.

EXPLICIT TRAVEL

For explicit commands of motion, there is a specific handler
termed Xmove. It is the first handler in the program area designated
for such routines, and Fig. 5-1 gives the code for it.

NAME ¢ XMOVE
TYPE: HANDLER
FUNCTION: EXPLICITLY-DEFINED MOTION

200 D=CT(8)+CT(9)*10=-1:FORK=1T010:CT(5
)=BK(K) :GOSUB1000:1FD<>CT(8)ORCT(0)<>C
T(6)+CT(7)*10THENNEXTK:GOTO202:ELSEIFB
K(K)<OTHENZ202ELSEB=CT(9):G0T0206

202 D=D#1:G0SUB1120:(FA=22THENB=4:GOTO
20L :ELSEIFA=23THENB=5:GOTO20L :ELSEIFA=
OTHENB=6:G0TO206 :ELSECT(0)=A:CT(1)=CT(
1)+1:G0T0100

204 GOSUB1100:GOTO580

206 GOSUBLLOU:GUTOLUG

Fig. 5-1. Handler Xmove.
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CODE CODE
A B DIRECTION A B DIRECTION
0 1 NORTH 5 6 SOUTHWEST
1 2 NORTHEAST 6 7 WEST
2 3 EAST 7 8 NORTHWEST
3 4 SOUTHEAST 8 9 upP
4 5 SOUTH 9 10 DOWN

Fig. 5-2. Direction code chart. Code A is used if only one digit of storage is
available for a direction.

Recall from the last chapter that the command interpreter, upon
receiving an input, isolates the first word and looks it up in the word
table. Upon finding the word, the ID number for that word is also
retrieved. Inherent in that number is the handler number that such a
command should invoke.

In the word table, there are sixteen words whose ID numbers
request the attention of Xmove. These are the following:

@®The eight abbreviated compass points: N, S, E, W, NE, SE, NW,
and SW

©The four major compass points; NORTH, SOUTH, EAST, and
WEST

@ The vertical directions with abbreviations; UP, DOWN, U, and D.

Each of these sixteen words, when entered by themselves,
result in the execution of Xmove, because each has an ID number
ending in 01, the handler number for Xmove.

(What about the use of these words with words like “GO?” A
command like “GO NORTH?” is explicit because of “NORTH.” But
the word “GO” is handled by the implicit travel handler temporarily.
You'll see this later. The explicit information is in the inclusion of the
direction word “NORTH.”)

The word ID number contains more than just the handler
number. Digits 3 and 4 have been set aside to convey extra informa-
tion, so that one general handler can respond to many individual
words with varied results. In the case of these direction words, each
ID number uses digits 3 and 4 to tell the handler what direction is
meant. Together, those digits have a value of from 1 to 10, according
to the chart in Fig. 5-2.

As in other cases of words with synonymous meanings, if a
direction word is an abbreviation of another, the two have the same
ID number. “SOUTH"” and “S” are synonyms, and both have an ID
number of 10501. The first 1 indicates that both are valid as a first

83



word. The 05 indicates a southern course and the final 01 invokes the
handler Xmove.

If you review the code for the command interpreter in the
previous chapter, you'll notice that when Xmove (or any other
handler) is invoked, some information is ready for use. First, the
variable N still contains the ID number for word 1 of the input
command. Second, the variables CT(6) through CT(10) still contain
the five digits of N, isolated. Third, the strings TX$(3) and TX$(4)
contain word 1 and word 2 unchanged. All of these help a given
handler do its job.

THE DECISIONS OF XMOVE

Figure 5-1 shows the handler Xmove, which is probably the
most overworked handler in Basements and Beasties. To aid in
discussion of the code, here is a list of its tasks.

@ Check the obstacle list to see if motion in that direction is in any
way restricted.

®Check the travel table to see if motion in that direction is either
deadly or impossible.

@Perform the motion if possible and increment the counter that
keeps track of the number of steps taken.

The first task is a tough one. If the player chooses to go north,
there may be an obstacle in his way. Way back in Chapter 2, you saw
that there are two types of obstacles: active (like creatures) and
passive (like locked doors). To keep track of these, the array BK®)
with special numbers that describe where the obstacles are, what
directions they block, and more.

Figure 5-3 shows the way these numbers in BK(») are as-
signed. Digits 1 and 2 of the number tell which room the obstacle is
in. Digit 3 tells which direction is blockaded by the obstacle (using 0
through 9 as the ten possible directions). Digit 4 gives the message
number of the line that is printed if the obstacle is encountered
(message 1, 2 and 3 are set aside for obstacles).

Digit 5indicates if there is another number in BK(#) that relates
to this one and where it is (such as in the case of a door, which is
simultaneously in two rooms). Paired obstacle numbers of this kind
in BK(») are always immediately adjacent to each other; digit 5 tells
whether the other part of the pair is before it, after it, or simply
nonexistent. (Creature obstacles ccoupy only one roem, and thus
require only one number in the BK () array.) Finally, the sign of the
number indicates if the obstacle is passable or not. If the number is
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SIGN 5 4 3 2 1
STATUS LOCATION OBSTACLE DIRECTION ROOM
OF OF MATING TYPE BLOCKED NUMBER
OBSTACLE ENTRY 1-3 0-9 1-20
+ OR ~ 0-2

Fig. 5-3. Assignment of digits in elements of Obstacle List array BK(n).

positive, the obstacle is nonpassable; if negative, it is passable. (The
door can be open or closed, for example.)

Now, Xmove knows what direction is being attempted. What it
needs to do is search through every entry in BK(n). If it finds no
entries that match the room, motion is possible. If it finds no entries
that match the desired direction, motion is possible. If it finds the
obstacle is passable, motion is possible, but a match in all three areas
results in an obstacle.

Xmove begins by checking the obstacle list, BK (%), for matches
with the room and direction. The direction, remember, is a part of
the extra information embedded in the ID number of words like
“NORTH?” or “UP.” The ID number is still in variable N, so Xmove
needs to isolate that direction information.

The first expression in Xmove does this very thing. CT(6)
through CT(10) still contain the digits 1 to 5 of the ID number, and
CT(8) and CT(9) contain the direction value, from 1 to 10. The
expression CT(8)+CT(9)*10 retrieves that value, but you needit in
the form of 0 to 9, since that is the form used in the obstacle list. The
value is lessened by one, and the result is placed in D.

Next, Xmove needs to set up a loop to test each of the numbers
in the array BK(#). In order to compare specific digits in those
numbers, each and every element needs to be broken down, using
the subroutine Analyz. So, a loop must fetch a number from BK (%),
place it in CT(5) for analysis, call Analyz, and then do the desired
comparison. Xmove uses a FOR-NEXT loop with the variable K;
there are ten entries in BK(#); so the loop is set to that limit.

Each time the loop selects an entry from BK(z), Xmove tests
the entry. Is the desired direction (stored in D) the same as the
blocked direction (stored in digit 3, or CT(8), of the obstacle
number)? Also, is the present room (stored in CT(0) as always) the
same as the room where the obstacle is? (The expression
CT(®)+CT(7)*10 recreates the room number from digits 1 and 2.) If
not, the examination loop continues with another entry from the
obstacle list. If no matches are found, program control goes to line
202, which checks for other travel restrictions.
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What if an obstacle match occurs? In that case there is still a final
question: is it passable? Sure, there’s a door here—but it may be
open! The way to checkis to see if the number is less than zero. If so,
the obstacle is passable and can beignored. If not, the obstacle poses
difficulty and motion is prohibited.

Digit 4 of the obstacle number contains the message number to
be used in printing the explanation for the difficulty. In Basements
and Beasties, this digit is a 1 for creatures, a 2 for steel grates, and a
3 for doors. Message 2, for instance, says, “THE GRATE IS
CLOSED AND LLOCKED."” Line 206 calls Mesprt to display the line
and then returns to Executive.

(An obstacle can be made passable, of course, if you know how.
Commands like UNLOCK for doors and KILL for creatures are
discussed in their proper chapters.)

CHECKING THE TRAVEL TABLE

This is all very well and good. Perhaps there isn’t any locked
door in the way. Now Xmove must consult the authoritative travel
table, the map of the scenario. From it, the handler can tell what
room is the destination of the desired direction, or if that direction
leads to some sort of horrible doom.

Figure 5-4 gives a small portion of the actual travel table, which
is data block 1. Inits entirety, the table has twenty lines, one for each
room. For each line, there are ten numbers, plus an extra that is
used by another hander for implicit travel. These ten numbers
correspond to the ten possible directions. Each number is the
number of the room which is the destination of a move in that
direction. Thus, if aroutine needs to know where the player will end
up if he is inroom 3 and tries to go southeast, it is simple. It finds the
third line (for room 3) and the fourth number (for the fourth direction,
southeast). The table says that the player will end up in room 10,
provided no obstacles are in the way.

Wait a moment! What are all of those zeroes in that line? There
isn't aroom 0, is there? True. In addition to travel resulting in arrival
at aroom, travel can also result in no motion—because there may be
awallin that direction. The room number zero represents a wall, and
any attempt to move in that direction results in the message, “YOU
CAN'T GO THAT WAY.” Plus, travel can result in death, if the
player falls off a cliff or steps into a wall of flame. The unused room
number 22 represents death by falling and 22 represents death by

fire. If the player moves in a direction indicated by a 22 or 23 in the
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Fig. 5-4. The first several lines of the travel table as it is stored in a DATA
block.

travel table he dies, and a special handler called Resur (for resurrec-
tion) is called to give the player a new start.

To help Xmove search the travel table for these all-important
numbers, there is a subroutine called Travec (for travel vector).
Given a direction number from 1 through 10 stored in variable D,
Travec finds the destination number in the table line for the present
room and returns with that number in variable A. Xmove already has
the direction number in D in the form 0 through 9; it adds one to D
and calls Travec. (Check Chapter 3 for the discussion on Travec and
how it uses Access to locate the numbers.)

Since A has been set to the destination number, it is easy to
compare A to the three special case numbers, 22, 23, and 0. In the
first two special cases, a death-notice message must be displayed.
The variable B is set to message number 4 (for a fiery death) or 5 (for
afalling doom), and Mesprt is called. Then the special death-handler
Resur is executed from line 204. If the destination number equals
zero, then the message number for “YOU CAN'T GO THAT WAY”
is placed in B and Mesprt is called. The handler loops back to the
command subsection of Executive to receive a new command.

If Xmove has managed to elude all of these special cases, then
the motion finally takes place. CT(0), the room number is changed to
A, the destination number. At the same time, the variable CT(1) is
increased by one. CT(1) is the counter that records the number of
steps taken, which is always of interest to players trying to get
through the basement in the minimum number of steps. Xmove then
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terminates by looping back to the description subsection of Execu-
tive, so that the adventurer can see his new location.

See how complex mere motion can be? And that’s only explicit
travel.

IMPLICIT TRAVEL

Implicit travel comes into play with motion words that do not
specify the intended direction of travel. For these words, thereis a
second handler, called Imove (for implicit move). Figure 5-5 shows
the entire BASIC routine.

Imove is handler 2. In the word table there are presently five
words whose ID numbers request the execution of Imove. These
are IN, OUT, GO, ENTER, and EXIT.

Strangely enough, all five have identical ID numbers. The
question that comes is this: how is Imove to know which direction to
infer from those words? None specify extra information in their ID
words.

The answer is found in the travel table. Remember that for
every room there is a line; and for every line there are ten regular
destination numbers, plus an unused eleventh number. That
eleventh number now comes into play as the default direction. It is
not a room number; it is a direction number from 0 through 9. In any
case in which direction is not explicit, this default direction number is
used.

Consider the case of room 1, the above-ground pit, which has a
hole in the ground leading to the basement. Down is the default for
room 1; so that IN or ENTER result in the logical motion of entering
the hole. True, EXIT and OUT do not fit, and GO could be inter-
preted in any direction. What the default direction does is limit the
amount of code necessary to handle implicit travel. Without it, for
every room there would need to be a separate number for each
implicit word used. There are some possible compromises, but for
the moment this method of choosing direction works quite well.

Imove is understandably quite simple. There are three cases in
which it is executed. In the first, the implicit-travel word can be input
alone, as in GO. In the second, the implicit-travel word may be input
paired with another implicit-travel word, as in GO IN. In the third,
the implicit-travel word can be input paired with an explicit-travel
word, as in GO NORTH. Imove can handle all three cases.

The first case is evaluated firet. If the player merely types in
“GO,” there is a word 1 with no word 2. Thus, the string TX$(3),
which holds word 2, is empty. Imove checks to see if TX$(3) is null.
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NAME: IMOVE
TYPE: HANDLER
FUNCTION: IMPLICITLY-DEFINED MOTION

220 (FTX$(3)=""THEND=11:GOSUB1120:N=A*
100+10101:GO0TO108:ELSEA$=TX$(3):G0T010
6

Fig. 5-5. Handler imove.

If it is, Imove seeks out the default-direction number. Setting the
variable D to 11 and calling Travec, the default-direction number is
obtained in A. From this number it creates an artificial ID number,
the sort of ID number that an explicit-travel word might have. The
expression A*100+10101 results in an ID word that requests the
explicit handler Xmove and specifies a desired direction of 1 through
10.

Finally, Imove injects this artificial ID number into Executive at
line 108. At that point Executive acts as if it had received an
explicit-travel command and proceeds accordingly.

If two input words are used, the second word is placed in A$. It
re-enters in Executive at line 106. At that point, Executive acts as if
only one word, the second one, has been input. In the case of GO
NORTH, Executive now sees NORTH and has no trouble knowing
what to do. In the case of GO IN Executive sees IN and eventually
requests Imove again, which uses the default direction.

That takes care of two of the kinds of travel possible in the
adventure program. There remains one more to consider.

MAGIC TRAVEL

Magic travel in adventure programs is usually included to help
the player out of some sort of a trap or to provide a way to complete
the game in the least possible steps. At root, magic travel permits
the adventurer to circumvent the standard rules of scenario motion
and make a sizable leap into a far distant room, ignoring any walls or
obstacles that may be in the way.

This sort of travel is accomplished by the use of a magic word of
some sort. Part of the challenge of an adventure game is to find out if
magic travel exists and what word triggers it off. Perhaps the word is
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written on a wall of one of the rooms. Maybe it is in a hook. Maybe
one of the creatures said it at times. Whatever the case, the word is
hidden somewhere and must be unearthed.

In Basements and Beasties, as you'll find, the magic word is
written in ashort poem on the wall of Room 6. If the player enters the
command READ, he hears the poem. The magic word is
AARDVARK (don't ask me why; it just sounded right). There are
two ways of using it. The player can enter the command “SAY
AARDVARK,” and get magic travel. The player may simply type in
the word “AARDVARK,” and it will still work. There are limitations
on the effectiveness of the word, as we'll see shortly.

Right off the bat, you can see that you need three handlers to
support the use of magic travel as it has been described. You need:

©One handler to recognize the word READ
@One handler to recognize the word SAY
®One handler to recognize the word AARDVARK

The first handler to examine is the handler called READ. It
starts at line 400. Figure 5-6 is the listing.

There are two cases in which the player might use the command
READ: either when he is in room 6 or when he is somewhere else
(how simple). In the room description for room 6, the player is
informed that an oracle “HAS LEFT A MESSAGE ON THE
WALL.” There is no reading material anywhere else in the base-
ment. You can expect only two responses to the command READ. If
the player is inroom 6, he hears the poemrecited. Ifhe is elsewhere,
he hears nothing of interest. The handler READ, then, should be
able to determine where the adventurer is and be prepared to print
one of two messages depending on the location.

NAME: READ
TYPE: HANDLER
FUNCTION: READING OF SPECIAL

MESSAGES
400 (FCT(O0)<>6THENB=32:GOTOLO2:ELSEB=3
3
402 GUSUB1100:GOUTOL1UL

Fig. 5-6. Handler Read.
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NAME : SAY
TYPE:  HANDLER
FUNCTION: SAYING OF MAGIC WORDS

460 IFLEFT$(TX$(3),5)<>"AARDV"THENB=34
:GOSUB1100:GOTO104:ELSES60

Fig. 5-7. Handler Say.

Line 402 of READ is a call to the subroutine Mesprt, to display
the message chosen. Line 400 selects the message. If CT(0), the
present room location, equals 6, the poemis printed. The poemhasa
message number 33. In any other room message 32 is displayed:
“NOTHING HERE TO READ . .. HOW DULL!”

The poem that is displayed is no great work of art, but it does
the job:

THE DANGER HERE

IS PRETTY THICK.

BUT SAY AARDVARK
YOU'LL GET OUT QUICK!

It should be noted, as an aside, that the poem is contained, as
are all messages, on a one-line DATA statement. But how is it that it
is displayed in four neat little stanzas like that? The secret is in how it
is typed into the DATA line. The down-arrow of the TRS-80 inserts
a line-feed into the text. When message 33 is being created, the
programmer inserts a line-feed in between each of the four sections
of the poem. The DATA statement doesn’t care, but the end result is
catchy when it is displayed.

The next handler to take a look at is SAY. First, if the player
enters the input “SAY AARDVARK,” the handler should respond
exactly as if the player had simply said the magic word by itself and
initiate magic travel. Second, if he enters the input “SAY XYZ,”
where XYZ is anything but the magic word, nothing should occur and
a message should be displayed.

The second case is checked at the start of the handler SAY, in
Fig. 5-7. If the player enters “SAY AARDVARK,” word 2, which is
kept safely in variable TX$(3), is the word “AARDVARK.” The
handler looks at the first five letters of the second word 2, just to see
if they fit this case. The BASIC expression LEFT$(X$,n) is used to
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extract the desiredletters of TX$(3). If a match does not occur (and
woe to the player who misspells “AARDVARK”), then Mesprt is
called to display message 34, which says, “NOTHING HAPPENS.”
Then Executive is re-entered.

Note that this sort of message is desirably noncommittal. It
does not say, “I DON'T RECOGNIZE THAT WORD,” even if that
second word is absent from the word table. The idea is to leave the
player in doubt as to whether or not that second word may still be
useful. In any new game experienced adventure players try to use
old magic words that they picked up from similar games. Thus, they
will type, “SAY ABRACADABRA,” or, “SAY OPEN SESAME,” or
whatever. Since this handler only states that nothing happened, it is
possible (reasons the player) that the command might work in some
different room or under different circumstances. This sort of am-
biguity prolongs the mysteries of the game.

What if he says “SAY AARDVARK?” In that case the handler
goes ahead and jumps to line 560, which is the beginning of yet
another handler. This is the handler AARDVARK (see Fig. 5-8).
Lines 560 and 562 actually determine whether the player experi-
ences magic travel or not.

The limitations of magic travel vary from adventure program to
program. In some games the player must be holding some particular
object in order to travel. In others, he must be in a specific room. In
some games, the travel amounts to a random teleportation. In
others, magic travel is limited to a two-way path between two
predetermined rooms.

In Basements and Beasties magic travel occurs between two
rooms only: room 6 and room 1. This is helpful for two reasons.
First, room 6 contains a dangerous creature who guards the only
doorway out of the room. If the player wanders into the room, he
finds a treasure and a trap! The only way out of the room is magic
travel. Second, room 1 is the bottom of the pit room, and it is the
home base of Basements and Beasties.

For any new-found treasures to be registered in the player’s
score, they must be smuggled out of the basement and up to room 1.
It is very helpful to have a magic pathway to home base; the slower
method is to travel on foot all of the way through the basement,
risking an encounter with a hungry creature.

The handler AARDVARK brings about travel between these

. M1 YTYOAN Al s een 3
itwo rooms. Checking CT®), the present room location, AARD-

VARK determines which way the travel should go. If the adventurer
is in room 6, he is switched to room 1 simply by changing the value
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NAME ¢ AARDVARK
TYPE: HANDLER
FUNCTION: OPERATION OF MAGIC WORD

560 IFCT(0)=6THENCT(0)=1ELSEIFCT(0)=1T
HENCT(0)=6ELSEB=34 :GOSUB1100
562 GOTO1lo00

Fig. 5-8. Handler Aardvark.

of CT(0). If he in room 1, he is transported to room 6. What if he is
somewhere other than room 1 or 6? If that’s the case, that ambigu-
ous message 34 is displayed: “NOTHING HAPPENS.” Again, the
player is left with the question of under what circumstances the
word “AARDVARK’ works.

TRAVELING, IN REVIEW

Looking back, you have seen the three types of travel that are
available to the adventurer, along with their associated handlers.
These are explicit travel accomplished by the handler Xmove, im-
plicit travel accomplished by the handler Imove, and magic travel
accomplished by the handlers SAY and AARDVARK and supported
by the handler READ.

Realistic travel conditions form one part of the believability of an
adventure scenario. The ability to interact with objects within the
scenario forms another. In the next chapter, you'll see how such
interaction is effected in Basement and Beasties.
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Chapter 6

Affecting the Scenario

How would you feel if you were walking around in someone’s home,
and you tried to pick something up, but it wouldn’t budge? Just when
you thought you'd gotten a good grip on that magazine, you lifted it
.. . but it stayed put. Then you tried to leave; you reached out to
open the front door . . . but it refused to open. How much more
nightmarish could it get?

A world in which nothing can be changed is an unreal world. In
order for the artificial world of the adventure program to sustain a
simulated reality, the wandering adventurer must be able to bring
about changes in it. Doors must open and close; objects must be
movable.

Two sets of input commands are implied by this requirement of
simulated reality. These are:

@® Commands to unlock and open doors and to close and lock them;
® Commands to pick up and carry objects and to drop them.

For each of these commands there are associated handlers,
tables, and arrays that are affected by them, specifically, the object
status array and the obstacle list.

BEHIND CLOSED DOORS

In order to understand how handlers that open and close doors
work, we need to review the obstacle list for a few moments.
Remember that the array BK(») contains a set of numbers that
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describe obstacles that impede the progress of the adventurer. The
three types of obstacles are doors, steel grates, and creatures.
Doors and grates are subject to the handlers under discussion now;
creatures can only be handled by battle, as described in the next
chapter.

Doors and grates are unique things, since they actually occupy
two rooms at once. For this reason, each door or grate needs two
entries in the array BK(%), one for the status of the obstacle in each
room. If a door is closed and locked, it must pose an obstacle to the
adventurer regardless of which side of the door he is on. Thus,
whatever handler opens and closes doors and such, it must be able to
change both status numbers for that door in BK(x).

In Basements and Beasties as in similar adventure programs,
there exists a key (object 11) that unlocks doors and grates. Without
this key the status of those obstacles in BK(x) cannot be altered.
Unlike other programs, however, doors and grates exist in one of
only two states: closed and locked or unlocked and open. Other
programs may permit an intermediate state of “closed yet un-
locked,” but this seemingly simple addition complicates obstacle
handling quite a bit. (That doesn’t keep you from adding it if you think
it’s worth the trouble.)

Consider first a hypothetical handler that opens doors. Such a
handler must answer the following questions:

@®Did the player tell what he wanted to open?
®If he did, is that door or grate nearby?

®If it is, is the door or grate closed?

olf it is, does the player have a key?

The handler that answers these questions and opens the door is
handler 5 and is called Open. Figure 6-1 provides the Open listing.
There are two words in the word table whose ID numbers request
the execution of Open. These are OPEN and UNLOCK. This makes
sense, because to unlock a door in this program also causes it to
swing open and to lock it implies that it is closed. Thus, the two
words can be treated as synonymous.

Open begins by checking to see if the player provided enough
information for a valid response. If the player merely types
“OPEN,” that may not be good enough; there may be two doors that
are adjacent to a given room. Open checks for this case by looking at
word 2, which is stored in TX$(3). If TSX$(3) is of null length, then
Open does not bother to proceed any further. Rather, it issues the
standard “play-dumb” statement, message 7, by setting the variable
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NAME ¢ OPEN
TYPE: HANDLER
FUNCTION: OPENING OF DOORS AND

GRATES

280 IFTX$(3)=""THENB=7:GOT0O284 :ELSEA$=
TX$(3):G0SUB1080:CT(5)=N:GOSUB1000:A=C
T(8):GOSUB1200:{FA=0THENB=12:GOTO234:E
LSEIFBK(A)<OTHENB=13:GOT0284 :ELSEIFOB(
11,1)<>21THENB=16:G0T0284 :ELSEGOSUB122
0:B=12+CT(9)

284 GOSUB1100:GOTO104

Fig. 6-1. Handler Open.

B to 7 and calling Mesprt in line 284. Message 7 simply asks,
“WHAT DID YOU SAY?” and gives the player another chance tobe
more lucid.

Assuming that the player did enter some sort of second word
along with the key word “OPEN” or “UNLOCK,” the handler tries
toidentify the meaning of that word 2. It calls the subroutine Idword,
which begins at line 1080. Idword takes the word stored in the string
variable A$ and searches the word table for it. If it is found, it returns
with the ID number for that word in the variable N. If it is not in the
program’s vocabulary, it returns with N set to zero. Open saves
word 2 in A$ and lets Idword loose on it.

When Idword is finished, Open is interested in the individual
digits of the ID number stored in N. Since this is so, it calls Analyz to
break N up into digits. Analyz takes the contents of CT(5) and places
digits 1 to 5 in CT(6) to CT(10). Open sets CT(5) equal to N, and
Analyz does the rest. Note, for the moment, that if N equals zero
(because the second word was not found in the word table, Analyz
simple places zeros in all of the variables CT(6) to CT(10).

Now that Open has all of the digits laid bare, it is interested in
only one of them: digit 3. Recall that for objects the digits 1 and 2 of
the object’s ID number represent the object number. If, for exam-
ple, you look up the word “SPIDER” in the word table, the ID
number has the value 15in digits 1and 2, because the spider is object
15 in the list of objects for Basements and Beasties.

Things ke doors and grates, however, are special. They are
not objects in the regular sense; they cannot be carried away or
dropped. Thus, there is no object number for a door or a grate.
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Rather, they are assigned a special object number of 17. Digits 1 and
2 of the ID numbers for the words “DOOR” and “GRATE” have a
value of 17. Later, you'll see that when the player tries to pick up and
carry anything with an object number of 17, the program refuses,
telling him that “IT IS IMMOVABLE.” This prevents some pretty
embarrassing program inconsistencies!

If the ID number of word 2 that Open just analyzed does not
have a useful object number, what good is the ID number at all? The
other digits do not have any designation, do they? The answer is,
yes, they do. There are three types of obstacle, remember. It can be
very useful to Open if the ID number can convey which type of
obstacle. Only for the two words “DOOR” and “GRATE,” digit 3 of
their ID number is assigned to be the obstacle type: type 2ifitis a
grate and type 3 if it is a door. (Type 11is a creature, but you don’t
open and close creatures.)

The reason that Open is interested in the obstacle type is simply
that the obstacle-type number is used in the entries of the obstacle
list, BK(n). There are two questions that Open needs to answer
from the obstacle list: (1) is there any obstacle in this room and (2) if
80, is it the same obstacle that the player wants to open or unlock?

Each entry in the obstacle list contains the answer to both of
these questions. Digits 1 and 2 of each entry give the room numbey
where the obstacle is, and digit 4 is the type number, 1, 2, or 3. So
the handler Open now must search the obstacle list and do two
comparisons. First, it must find any entries that match the present
room number, which (as always) is in CT(0). Second, of those
entries it must find any entries whose obstacle type matches the
type number presently in CT(8), the obstacle input by the player as
the second word of his OPEN command.

There exists a handy subroutine to search the obstacle list. It is
called Ckobs (as in check obstacles), and it is given in Fig. 6-2.
Essentially, it takes each and every entry in BK(#), breaks it up into
its digits, and performs these two comparisons. If it finds such an
entry, it returns with the position of the entry placed in the variable
A. If no matching entry is found, A is set to zero. Using this value 4,
Open can find and change the appropriate entries in the obstacle list,
BK®).

Ckobs begins by setting up a FOR-NEXT loop of from 1 to 10,
since there are ten entries in BK(). Each entry is broken down by a
call to the subroutine Analyz (using GOSUB 1000). The handler
Open has previously set the variable A to the obstacle type for which
itis looking. So Ckobs compares the room number and obstacle type
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NAME 3 CKOBS
TYPE: SUBROUT INE

INPUT: A TYPE OF OBSTACLE (1 - 3)

k]

OUTPUT: A

OBSTACLE LIST ENTRY
NUMBER IF FOUND

A = 0 OTHERWISE

1200 FORQ=1T010:CT(5)=BK(Q):GOSUB1000:
IFCT(6)+CT(7)*10<>CT(0)ORCT(9)<>ATHENN
EXTQ:A=0:BELSEA=Q

1202 RETURN

Fig. 6-2. Subroutine Ckobs.

with every element of BK(n). The expression CTT(6)+CT(7)*10
recreates a room number from digits 1 and 2 of the obstacle list
entry. If this value doesn’t match the present room number in CT(0),
or if digit 4 in CT(9) doesn’t match the obstacle type stored in the
variable A, the FOR-NEXT loop continues the search. If the loop
runs out without finding a match, A is set to 0 and the subroutine
returns. If a match is found, then 4 is set equal to @, the variable
used for the FOR-NEXT loop. Thus, if the fourth entry is a match, A
equals 4.

Now to answer a question you may be keeping. Awhile back, a
word-table search was made to find word 2. If a word is not found in
the word table, the handler Open cannot check the word. If a player
types in something like “OPEN CUCUMBER,” what is to keep the
handler from making an erroneous response?

Ckobs filters this out. Remember that if a word is not found in
the word table, the subroutine Idword returns a zero. This breaks
down into five zero digits. When Open calls upon Ckobs to perform
the two comparisons of room and obstacle type, a match cannot
occur. Why? Because an unrecognized word 2 would be requesting
to open an obstacle of type zero! Such an obstacle doesn't exist; no
entry in BK(») has an obstacle type of zero. So the response to a
command like “OPEN KANGAROQ" is the same as to a command
ke “OPEN DOOR” in a roem with no doors.

The handler Open now has an obstacle list entry number from 1
to 10, or zeroif no entry is found that matches the command request.
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Open begins to act on this new information. What if no such obstacle
exists? If so, A is a zero. Open tests for this and calls Mesprt to
display message 12, which reads, “I SEE NOTHING OF THE
SORT HERE!”

Next, Open must decide if the door or grate needs to be
opened. Obviously, if it is already swinging in the breeze, it is
ridiculous for the handler to go through the act of opening it all over
again. The way that Open determines this case is by referring to the
obstacle list entry. A equals the position of the entry that was found,
and BK(A) is the entry itself. The obstacle list indicates whether or
not an obstacle is passable using the sign of the entry. That is, if the
entry is anegative number, then the obstacle is passable: the door or
grate is unlocked and open. Otherwise, it is closed and locked and
needs to be opened. Open checks to see if BK(A) is less than zero,
and if it is, it calls for the display of message 13, which reads, “YOU
DON'T NEED TO.”

The final contingency is the possession of the key. Without the
key, which is object 11, no door or grate can be opened. The key
must be in the player’s possession; that is, he must be carryingit. It
cannot simply be lying nearby in the room. Open checks the object
status array to find where the key is. The variable OB(11,1) betrays
the key’s room nurmnber at that time. Anything that the adventurer is
carrying is assigned a room number of 21. Thus, the player can only
open the door or grate if OB(11,1) equals 21. If it does not, the
handler calls for the display of message 16, which reads, “YOU
HAVE NO KEY!”

Once Open manages to execute all these steps, it is ready to
unlock and open the door or grate. To do this, Open calls upon a
subroutine called Revobs (for reverse obstacle), which is given in
Fig. 6-3. Given an obstacle-list entry number from 1 to 10in variable
A Revobs performs two functions: it reverses the sign of the entry
indicated by A, and if a corresponding entry exists in the list, it
reverses the sign of that entry as well.

Note that Revobs reverses the sign of the entry. That means
that if the door or grate is closed, it will be opened. Revobs can also
close open doors. Revobs comes in handy to input commands like
LOCK GRATE. Note also that it finds a corresponding entry (if
there is one) and complements it. That way, a door becomes open
on both sides, in both rooms it connects. If there is no corresponding
entry (as in the case of creature obstacles), Revobs performs only
the first function. REVOBS also is used to make unpassable crea-
tures passable, when we discuss battle commands in the next chap-
ter.
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NAME s REVOBS

TYPE: SUBROUTINE

INPUT: A = OBSTACLE LIST ENTRY
NUMBER

OUTPUT: THE STATUS OF THAT ENTRY AND
OF ITS MATING ENTRY ({F ANY)

ARE COMPLEMENTED

1220 BK(A)==BK(A):CT(5)=BK(A):GOSUB100
0:1FCT(10)=1RETURNELSEBK(A=1+CT(10))==~
BK(A=1+CT(10)):RETURN

Fig. 6-3. Subroutine Revobs.

The first function is simple. Variable A already carries the
obstacle list entry number. So Revobs negates the variable BK(4).
The second function takes some figuring. In the obstacle-list entry
digit 5is assigned the task of telling routines whether or not thereis a
second entry, and if so, where it is. Remember that the two paired
entries for a door or grate in the obstacle list are always immediately
adjacent one to the other. Digit 5 allows three possibilities, indicated
as follows by a number from 0 to 2:

0. There is a corresponding entry immediately before this one.
1. There is no corresponding entry; this is the only one.
2. There is a corresponding entry immediately after this one.

The numbers 0, 1, and 2 were not chosen arbitrarily. Revobs
aready knows that entry BK(A) needs to be changed. Now, the
entry BK(A—1) or BK(A+1) or neither needs to be changed. Now,
the previous element can be expressed as (A—1)+2. Thus, Revobs
can use the numbers 0, 1, and 2 to identify the entry number of the
corresponding entry, if one exists.

Study Listing 6-3 to see how this is done. CT(10) contains digit
5:the numbers 0, 1, or 2. REVOBS returns if this is a 1, because it
has already complemented the sign of entry CT(A). Otherwise,
Revobs complements entry BK(A-1+C1(10)), which is the cor-
responding entry either before or after it. Then the subroutine is
ended and returns to Open, which called it.
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Someone is bound to ask this question, so I'll answer it now.
Since there are only ten entries in the obstacle list, why not use digit
5as anumber from 0 to 9, corresponding to the ten entries? Then, an
entry could specify exactly where its mate is, and the corresponding
entry would not need to be right next to the first one.

The answer is that this automatically limits the size of the
obstacle list to ten entries, with no room for expansion. The present
Basements and Beasties has only two doors, one grate, and four
creatures as obstacles. That’s really a bit skimpy. The present
system using relative location of paired entries allows the obstacle
list to be as large as need be.

The handler Open has one last task after Revobs is finished, and
that is to inform the adventurer that the door or grate has been
opened. Digit 4 of the obstacle-list entry is a number from 1 to 3,
indicating which kind of obstacle has been changed. In the message
block in memory, the messages announcing the opening of a door or
grate are placed next to each other, injust the right order to simplify
matters. Obstacle type 2 is a grate, and type 3 is a door; so the
message for the opening of a grate precedes the one for a door. The
expression 12+CT(9) results in a value of 14 for a grate and 15for a
door. Message 14 states, “WITH A CREAK, THE GRATE FALLS
OPEN.” Message 15 says, “THE DOOR SWINGS OPEN WIDE.”
Notice that in both cases, the message is the same whether the
original command was “OPEN DOOR?” or just “UNLOCK DOOR.”
Either command has the same result.

LOCK THE DOOR BEHIND YOU

The other handler that relates to doors and grates is called
Close. Itis handler 6, given in Fig. 6-4. In the wordlist the two words
whose ID numbers request the execution of Close are “CLOSE” and
“LOCK.”

In many ways, Close operates exactly like Open, with a few
simplifications. The questions that Close must answer are:

@ Did the player tell what he wanted to close?
®]f he did, is that door or grate nearby?
®If it is, is the door or grate open?

If you are sharp-eyed, you noticed the one important difference
between Open and Close (other than the end result). That is the
requirement of a key. To close and lock a door or grate, the adven-
turer does not need the key. It simply swings shut and, as the
accompanying message reads, “THE LOCK CATCHES.”
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NAME ¢ CLOSE

TYPE: HANDLER

FUNCTtON: CLOSING OF DOORS AND
GRATES

300 (FTX$(3)=""THENB=7:GOTO304 :ELSEAS$=
TX$(3):GOSUB1080:CT(5)=N:GOSUB1000:A=C
T(8):G0SUB1200:1FA=0THENB=12:GOTO30L4:E
LSEIFBK(A)>0THENB=13:GOTO0304 :ELSEGOSUB
1220:8=17

304 GOSUB1100:GOTO104

Fig. 6-4. Handler Close.

Close performs the first decision by checking word 2. If word 2
in TX$(3) is nonexistent, the message “WHAT DID YOU SAY?” is
displayed. Otherwise, Close takes the word in TX$(3) and passes it
to Idword in the string variable A$. Idword returns with the word ID
number stored in the variable N. Close calls Analyz to isolate the five
digits of the ID number. Then it takes digit 3, the obstacle type, and
lets the subroutine Ckobs determine if the obstacle intended by word
2is really there in the room or not. If not (as indicated by a value of
zeroin variable A), message 12 is displayed: “I SEE NOTHING OF
THE SORT HERE.” Finally, the sign of the entry is checked. Ifit is
positive, then the door or grate is already closed and locked, and
message 13 tells the player, “YOU DON'T NEED TO.”

If the input command stands valid after all three tests, Close
goes ahead and reverses the status of the obstacle using the sub-
routine Revobs. The opened door or grate is set to a closed condition
by the changing sign of the obstacle list entry, along with a change of
the corresponding entry in the list.

When the time comes to tell the player what has been done,
Close does not make a distinction between doors and grates, as
Open did. Rather, the general message 17 is used, which reads, “IT
SLAMS SHUT AND THE LOCK CATCHES.”

One intriguing final note should be made about the difference
between the handlers Open and Close. Open requires a key, and
Close does not, as we have seen. This means it is quite possible for a
poor, misguided adventurer to walk through an open door into a
room with only the one exit, and slam the door shut behind him, all
without a key. Both rooms 6 and 11 are traps like this, if a player is so
foolish. Room 11 does provide an out, though; the magic word
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“AARDVARK? teleports the player to freedom. Room 6 can be a
terrible place to spend the remainder of one’s game!

TAKE THE TREASURE AND RUN

Now that I've covered the specific scenario interaction affecting
doors, I can move on to the general set of commands controlling
Carrying objects. The simple actions of picking up and dropping
articles are not so simple after all. What objects are movable? How
much can the adventurer carry? Questions like these must be
answered by the relevant handlers.

Two handlers relate to the tasks of object-toting. These are
Take and Drop, and they are invoked by the corresponding com-
mand words, TAKE and DROP, followed by the name of the object.
Two other words, STEAL and THROW are synonyms with the first
two command words, respectively.

_ Let’slook at Take first. Logically, a handler to bring about the
Picking-up of objects must answer the following list of questions and
act accordingly:
® Does the adventurer already have too much to carry?
® Does the adventurer command ungrammatically?
® Does the adventurer want to take a creature?
® Does the adventurer want to take something immovable?
® Does the adventurer already have the object in his sack?
®Is the object requested either nonexistent or not in that room?

The first question has to do with the maximum amount an
adventurer can carry. In Basements and Beasties this maximum is
set strictly on the basis of quantity. An adventurer can only carry five
objects, regardless of size or shape. This is unrealistic in some ways,
but it is simpler to handle.

If the adventurer could carry more than five objects, each and
€very movable object would have to be assigned a mass number or
something of that sort. Then, the handler Take would determine its
response by adding up all of the mass numbers of the objects now
carried and comparing the result to some arbitrary maximum. If you
care to do this, it should be a simple matter to assign the unused
elements of the object status array, OB(X,0), as object mass num-
bers ranging in value from 0 to 255. Then a maximum total mass of
around 500 could be set to limit what the adventurer carries. Small
objects like the coin and the key would have mass numbers in the
50s, and heavy objects like the golden cube would have a value of
overr 100. An example of this method is provided for you in Chapter
10.
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You might ask what is the purpose of a carry-limit anyway. The
primary reason is to require the adventurer to make several succes-
sive trips into the basement in order to get all treasures out. If he
could carry anything and everything, he would make one long excur-
sion, get everything, get back to home base, and end the game. With
a maximum limit based either on quantity or mass, he must forever
fight his way back to the entrances—that adds to the challenge.

At any rate, the present version of Basements and Beasties
sets an upper limit of five objects. The variable CT(2)is set aside to
keep track of the number of articles the adventurer has. The handler
Take must check to see if CT(2) is already at its maximum of five.

Figure 6-5 gives Take. The first question is answered by
comparing the value in CT(2) with the value of five. If CT(2) equals
or surpasses the maximum, Take refuses to pick up the requested
Object. It notifies the player of this refusal by setting variable B to 36
and calling the subroutine Mesprt. This prints message 36: “YOUR
ARMS ARE FULL . .. YOU CAN CARRY NO MORE.” If CT(0) is
less than five, though, Take proceeds to consider the other ques-
tions.

The next question has to do with the player’s grammar. The
command has taken the form, “TAKE X,” where X is some word. In
order for the handler to know which object to pick up, it must try to
define that word X. It must submit that word to a search of the word
table to find it in the vocabulary.

The grammar problem is this: what if the second word in the
command is in the word table but is not an object? For instance, a
player might type “TAKE OPEN.” The word “OPEN"is in the word
table—but it is a verb, not an object. The handler should not permit
such an ungrammatical possibility.

Fortunately, the program can determine between valid objects
and verbs. Each word in the word table is, of course, paired with its
1D number. This ID number has a one in digit 5if the associated word
is averb. That is, any word with an ID number of 10,000 or greater is
a verb. Thus, the handler Take finds the ID number of the second
word of the command and checks it against a value of 10,000.

Take uses the subroutine Idword to obtain the ID number. The
second word of the command is stored in TX$(3). By setting A$
equal to TX$(3) and calling Idword, the variable N is set to the value
of the ID number. If the word is not found in the word table, N equals

The handler compares N to 9999. If N is greater, the player
entered an ungrammatical command. The result is the display of
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NAME ¢ TAKE

TYPE: HANDLER
FUNCTION: PICKING UP OF OBJECTS

240 tFCT(2)>=5THENB=36:G0SUB1100:G0T01
OLsELSEAS=TX$(3):G0SUB1080:IFN>9999THE
NB=7:G0TO2L42:ELSE{FN>12ANDN<170RN=18TH
ENB=40:G0T0O242

241 IFN=17THENB=8 :GOTO242:ELSEIFOB(N,1
)=21THENB=9:GOTO242:ELSEIFOB(N,1)<>CT(
0)0RN=0THENB=12:GOTOZ&2:ELSEOB(N,1)=21
:B=11:CT(2)=CT(2)+1

242 GOSUB1100:G0TO104

Fig. 6-5. Handler Take.

message 7, which asks, “WHAT DID YOU SAY?” If N is less than
10,000, the command s at least grammatical, though it remains to be
determined whether or not the command can be executed.

The third question is asked because of wise-guy adventurers.
Almost certainly, someone will try to pick up and carry a creature.
Before I added this consideration, I had a play-tester who could not
get past the giant mantis. So what did he do? He carried the silly
creature out of the room! After groaning longly and loudly, Iinterpo-
lated this third question.

There are, of course, two kinds of creatures: the passive guard
creatures and the more dangerous tenacious creature (the Orc).
Passive creatures have object numbers from 13 to 16. The Orc,
although his position information is kept in OB(0,1), has an object
number of 18 in the ID number of the word table. When the handler
Take finds the ID number for the object to be carried, it must
compare that number to those of the creatures.

If N, the ID number, is both greater than 12 and less than 17,
then a passive creature is intended. Or, if N equals 18, the Orc is
intended. In either case, the command is rejected by a call to Mesprt
for message 40: “YOU MANIFEST SOME PRETTY SUICIDAL
TENDENCIES, FELLA!” That'll keep them from dragging your
dragons away!

The fourth question relates to immovable objects. Every room
has a somewhat elaborate description, telling its features, its colors,
and so on. In some cases such a description may mention the
presence of some article which nevertheless is not an object. Note,
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for instance, that the description for room 14 includes the statement,
“THERE ARE COBWEBS EVERYWHERE.” Now, suppose that
the player typed in the command, “TAKE COBWEBS.” Since Cob-
webs are not an object with an element in the object status array,
how can such a command be executed? If the word COBWEBS is left
out of the word table altogether, the response to that command
would be “I SEE NOTHING OF THE SORT HERE,” which would
sound ridiculous, since the room description just said that they were
there. Yet, if you put the word COBWEBS into the word table, what
ID number do you give it? You can presumably expand the object
status array to cover all these descriptive articles, but that would be
wasteful.

To simplify the situation, all descriptive articles are added into
the word table. Rather than unique object numbers, however, all are
assigned the value 17 in their ID number. The adventure program
knows how to treat all objects 17—as recognizable, but less than
true objects.

The handler Take checks to see if the article within reach is an
object 17. If it is, the command is rejected. Unfortunately, there is
little logical ground for refusing the command. If there are cobwebs
there, why can’t the adventurer take them? So, rather than giving
any real explanation, Mesprt is called to display message 8, which
avoids the subject but remains firm: “YOU TRY UNSUCCESS-
FULLY ... IMMOVABLE!” Granted, this is less than satisfying,
but the only simpler choice is to write room descriptions that don't
even hint at furniture or articles other than legitimate objects. That
can result in a boring scenario.

The next question checks to see if the command is even neces-
sary. Maybe he already has the object and doesn’t need to take it!
How can you tell? All objects that are in the player’'s possession are
given a location of value 21. That is, they no longer reside in the room
where he stands; they reside in room 21, which is the player’s sack.
If the adventurer already has the object, the handler Take knows by
checking the object status array.

Since the variable N gives the object number of the article, the
element OB(N, 1) gives the object’s physical location. If OB(N,1) is
equal to 21, the command is rejected and message 9 is displayed:
“YOU ALREADY HAVE IT!”

The final question is whether or not the requested object is
available for the taking. There aie two cases to nandle. In one Case,
the object may be in another room altogether. In the other, the
requested article may not exist in the word table. In either situation,
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the handling is the same—the handler replies that it doesn’t see the
article nearby.

As in the previous question, since N equals the object number,
OB(N, 1) gives its location. CT(0) tells the room number where the
adventurer is. Thus, if OB(N,1) doesn’t equal CT(0), the object
simply is not there. On the other hand, if the player asked to pick up
an article unknown to the program’s vocabulary (as in “TAKE
WOMBAT?"), the variable N would equal zero, because that is the
result of an unsuccessful word table search using the subroutine
Idword. If N equals zero, or if the other case occurs, the commandis
rejected with message 12, which says “I SEE NOTHING OF THE
SORT HERE.” Note that this does not reveal the program’s ignor-
ance of the article mentioned in the command; the player may find a
Wombat elsewhere!

If the handler Take gets through all six of the above contingen-
cies it is ready to perform its function. It does this in three steps.
First, the object must be transferred into the player’s possession.
This is done by removing it from the room and placing it in the
carry-sack. The variable OB(V,1) is set equal to 21 to effect this
transfer. Second, the program must keep track of how many articles
the adventurer is now carrying. Take performs an update by adding
one to the present value of CT(2), which records his inventory total.
Finally, the player must be notified of the success of the transaction.
For this, message 11 is printed: “OKAY.” As usual, a deceptively
simple message is used, obscuring the complex decision-making that
led up to it!

That takes care of picking up objects. Now we need to examine
how objects are dropped back into the room.

DROP THAT TREASURE!

There are two key words in the word table that are treated as
synonymous and relate to the dropping of carried objects: DROP and
THROW. Both of these invoke the handler Drop, which is given in
Fig. 6-6.

The operation of Drop is similar to, but simpler than, that of
Take. There are three questions this handler seeks to answer before
it can execute the command:

® Does the adventurer command ungrammatically?
® Does the adventurer have the object in his carry-sack?
®[s the adventurer dropping the Enchanted Grenade?

All three questions depend on the object number of the article to
be dropped. Idword is therefore called to locate the word stored in
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NAME ¢ DROP
TYPE: HANDLER
FUNCTION: DROPPING OF OBJECTS

260 A$=TX$(3):G0SUB1080:(FN>9999THENB=
7:GOSUB262:ELSEIFOB(N,1)<>21THENB=10:G
0T0262 :ELSE{FN=12THENSL40:ELSEOB(N,1)=C
T(0):B=11:CT(2)=CT(2)~-1

262 GOSUB1100:GOTO10kL

Fig. 6-6. Handler Drop.

TX$(3) somewhere n the word table and to place the word's ID
number in variable N. (For objects, the ID number equals its object
number.)

The first question is handled just as in the handler Take. If the
player has used a verb as the object of the command DROP, the
value of N exceeds 9999; that is, it is 10,000 or greater, since digit 5
is set to one for verbs. If this happens, message 7 gives the player
another chance with “WHAT DID YOU SAY?”

The next question is handled analogously to the handler Take,
with converse results. In this case the command is rejected if the
player does not have the object in his possession. If OB(N, 1) does
not equal 21, the object is not in the carry-sack. Mesprt is called tc
print message 10: “YOU DON'T HAVE IT!”

The final question cannot be fully explained until the next chap-
ter; there is one object that responds very strangely to the action of
dropping or throwing, and that is the Enchanted Grenade. It’s object
number is 12; if the handler Drop finds that object 12 is being thrown,
it refers the whole affair to line 540, which is the start of the handler
called Bomb. You'll see later that a number of things may happen
when Bomb is invoked, but that is another story.

With these exigencies considered, the transfer can now occur.
As before, there are three steps. The object’s location is changed,
by setting OB(N,1) equal to the room number stored in CT(0). The
inventory total in CT(2) must be updated by subtracting one. Lastly,
the simple message “OKAY,” message 11, is displayed.

The adventurer is making gradual progress. A few chapters
back he could merely walk about and look at things. Now he can
touch those things, take them with him, and cpenandclose doors. In
the next chapter, the adventurer learns to defend himself against the
creatures that roam unchained in the dark corridors of the basement.
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Chapter 7

Battling the Enemy

The danger factor differentiates an adventure program from a mere
Easter egg hunt. If all the adventurer has to do is wander around and
find treasures, there is no challenge! There must be something to
defy his attempts, something to hinder his progress, even to
threaten his life. That is why adventure programs have creatures.

Various programs handle their creatures differently. Some
creatures wander aimlessly about the scenario, bumping into the
adventurer at random. Some have a stationary post that they guard
continually. Some do not attack unless threatened. Others cannot be
slain by normal weapons. Battles may be decided on purely random
factors, or arecord may be kept of the combatant’s strength levels to
determine who should rightly be the victor.

Basements and Beasties has a combination of many of these
variations in its method of battle simulation. An attempt is made to
keep the algorithms simple while maintaining the illusion of an actual
struggle. There are three classes of battle in the program:

@ Attack/retaliation with certain passive creatures,
@ Special weapon against certain other passive creatures
@ Defense/offense against the tenacious creature

Figure 7-1 shows the beasts that wait in the wings. You recall
that there are really two basic kinds of creatures in any adventure
program. One type might be called passive creatures. Their main
purpose is to guard or block some passageway in the scenario. As
such, they are also bona fide obstacles and are present in the
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TYPE CREATURE WEAPON ROOM
PASSIVE GIANT MANTIS AXE 4
PASSIVE HUGE IGUANA AXE 18
PASSIVE WHITE SPIDER GRENADE 14
PASSIVE NAMELESS TERROR GRENADE 6
ACTIVE ANGRY ORC AXE

Fig. 7-1. The creatures of Basements and Beasties.

obstacle table. Other obstacles, like doors, are rendered passable by
the “OPEN" command. Passive creatures are rendered passable by
battle. They do not attack on their own, but if they are attacked, they
always retaliate. Since they are not immediately hostile, it is not
necessary for the adventurer to engage them in battle. However,
the player gains points for every creature killed, and there are
certain treasures he can never retrieve without passing a passive
creature.

To add to the challenge, not all passive creatures can be beaten
in the same manner. Of the four passive creatures, there are two
subsets of two each. One set may be engaged in the attack/
retaliation cycle and eventually slain. The other set is totally immune
to the standard weapon (the Axe), but may retaliate nevertheless.
The only way to kill these two creatures is with the Enchanted
Grenade.

Separate from the passi